Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and remova...Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and removal of Cu (0.095 mmol/L) were investigated as a function of Fe(Ⅵ) doses from 0.3-2.00 mmol/L at pH 10.0. It was found that Fe(Ⅵ) could readily oxidize CN and the reduction of Fe(Ⅵ) into Fe(Ⅲ) might serve efficiently for the removal of free copper ions. The increase in Fe(Ⅵ) dose apparently favoured the CN oxidation as well as Cu removal. Moreover, the pH dependence study (pH 10.0-13.0) revealed that the oxidation of CN was almost unaffected in the studied pH range (10.0-13.0), however, the maximum removal efficiency of Cu was obtained at pH 13.0. Similarly, treatment was carded out for CN-Ni system having the initial Ni concentration of 0.170 mmol/L and CN concentration of 1.00 mmol with Fe(Ⅵ) dose 2.00 mmol at various pH values (10.0-12.0). Results showed a partial oxidation of CN and partial removal of Ni. It can be observed that Fe(Ⅵ) can partially degrade the CN-Ni complex in this pH range. Further, Fe(Ⅵ) was applied for the treatment of simulated industrial waste/effluent waters treatment containing CN, Cu, and Ni.展开更多
Phenanthridine is a key structural motif in numerous natural products and biologically active compounds,making it an attractive target for pharmaceuticals and advanced materials.Recently,visible-light-induced cyclizat...Phenanthridine is a key structural motif in numerous natural products and biologically active compounds,making it an attractive target for pharmaceuticals and advanced materials.Recently,visible-light-induced cyclization through radical process has emerged as a powerful and sustainable strategy for building such a core under mild and environmentally friendly conditions,paving the way for new applications in synthetic and medicinal chemistry.This review highlights recent progress in the photochemical synthesis of phenanthridines,mainly focusing on various radical acceptors,including 2-isocyanobiaryls,cyanides,vinyl azides and vinyl benzotriazoles.展开更多
A process for treating cyanide tailings was proposed.The process essentially implicates reduction smelting which involves volatilizing silver,lead,and zinc in the cyanide tailings at high temperatures.Meanwhile,gold a...A process for treating cyanide tailings was proposed.The process essentially implicates reduction smelting which involves volatilizing silver,lead,and zinc in the cyanide tailings at high temperatures.Meanwhile,gold and copper combine with the reduced iron to form a metal phase,allowing for the simultaneous recovery of polymetallic elements.The experimental results indicate that the process works optimally with a coke powder of 7.5 wt.%,an alkalinity of 1.0,a melting temperature of 1450℃,and a melting time of 60 min.Under these conditions,more than 99% of gold,77% of copper and 94% of iron are incorporated into pig iron.In the meantime,the volatilization rate of silver exceeds 90%,while lead and zinc are essentially completely volatilized.The primary component of the by-product smelting slag is akermanite,which exhibits lower leaching toxicity than the national standard and belongs to general solid waste.Additionally,taking the trapping process of iron to copper as a case study,the mechanism of iron trapping is methodically examined and divided into three processes:smelting reduction,migration capture,and condensation deposition.展开更多
About 70%of the flue gas in the iron-steel industry has achieved multi-pollutant ultra-low emissions in China until 2023,and then the blast furnace gas purification has become the control step and bottleneck.Our resea...About 70%of the flue gas in the iron-steel industry has achieved multi-pollutant ultra-low emissions in China until 2023,and then the blast furnace gas purification has become the control step and bottleneck.Our research group has designed and constructed the world’s first blast furnace gas desulfurization pilot plant with the scale of 2000 Nm^(3)/h in October 2021.The pilot plant is a two-step combined desulfurization device including catalytic hydrolysis of carbonyl sulfur(COS)and absorption-oxidation of H_(2)S,continuously running for 120 days.In the hydrolysis system,one reason for catalyst deactivation has been verified from the sulfur deposition.HCN in blast furnace gas can be hydrolyzed on the hydrolysis catalyst to produce the nitrogen deposition,which is one of the reasons for catalyst deactivation and has never been found in previous studies.The deposition forms of S and N elements are determined,S element forms elemental sulfur and sulfate,while N element forms-NH_(2)and NH_(4)^(+).In the absorption-oxidation system,the O_(2)loading and the residence time have been optimized to control the oxidation of HS^(−)to produce elemental sulfur instead of by-product S_(2)O_(3)^(2−).The balance and distribution of S and N elements have been calculated for thewholemulti-phase system,approximately 84.4%of the sulfur is converted to solid sulfur product,about 1.3%of the sulfur and 19.2%of N element are deposited on the hydrolysis catalyst.The pilot plant provides technical support formulti-pollutant control of blast furnace.展开更多
Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the wat...Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 ~C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.展开更多
This report describes triethylammonium acetate (TEAA) ionic liquid catalyzed one pot synthesis of 6-amino-4-aryl-5-cyano-3- methyl-1-phenyl-1,4-dihydropyrano [2,3-c]pyrazoles by the reaction of aromatic aldehyde, ma...This report describes triethylammonium acetate (TEAA) ionic liquid catalyzed one pot synthesis of 6-amino-4-aryl-5-cyano-3- methyl-1-phenyl-1,4-dihydropyrano [2,3-c]pyrazoles by the reaction of aromatic aldehyde, malononitrile and 3-methyl-1-phenyl-2- pyrazolin-5-one at room temperature. TEAA plays dual role as reaction media and catalyst. It can also be easily recovered and reused in several runs. TEAA provides greener reaction protocol to present methodology which obviates the need of organic solvents, expensive and toxic catalyst.展开更多
Granular activated carbons were produced from palm nut shells by physical activation with steam. The proximate analysis of palm nut shells was investigated by thermogravimetric analysis, and the adsorption capacity of...Granular activated carbons were produced from palm nut shells by physical activation with steam. The proximate analysis of palm nut shells was investigated by thermogravimetric analysis, and the adsorption capacity of the activated carbons, produced as a result of shell pyrolysis at 600℃ followed by steam activation at 900℃ in varying activation times, was evaluated using nitrogen adsorption at 77 K. Applicability of the activated carbons for gold dicyanide adsorption was also investigated. Increasing the activation hold time with the attendant increase in the degree of carbon burn-off results in a progressive increase in the surface area of the activated carbons, reaching a value of 903.1 m2/g after activation for 6 h. The volumes of total pores, mieropores, and mesopores in the activated carbons also increase progressively with the increasing degree of carbon burn-off, resulting from increasing the activation hold time. The gold di-cyanide adsorption of the activated carbons increases with the rise of pore volume of the activated carbons. The gold di-cyanide adsorption of palm nut shell activated carbon obtained after 6-h activation at 900℃ is superior to that of a commercial activated carbon used for gold di-cyanide adsorption.展开更多
Over the past decade the concern about toxic metals in freshwater has increased. Environmental laws such as the Clean Water Act have forced industries that produce metal containing wastewater to treat their wastewater...Over the past decade the concern about toxic metals in freshwater has increased. Environmental laws such as the Clean Water Act have forced industries that produce metal containing wastewater to treat their wastewater prior to discharge. The purpose of this study was to investigate the use of a novel method for the minimization of heavy metals in the wastewater from the mining industry. A very promising electrochemical treatment technique that does not require chemical additions is electrocoagulation (EC) and sulphide precipitation. The present study has been done for the recovery of gold and silver contained in pregnant solution from the cyanidation process using the electrocoagulation technology with iron electrodes;that is a developed alternative technology for the Merril-Crowe process. The average gold and silver content in pregnant solution was 4.27 and 283 ppm respectively and the recoveries were 92% for gold and 95% for silver, with optimum operating parameters of pH 10, residence time of 20 minutes and addition of sodium chloride of 4 gr/L. The results of precipitation process show that the elimination of lead, zinc, cooper and iron ions from the barren solution was successful, with optimum operating parameters of pH 3 and residence time of 15 minutes, and the recoveries were 99% of these ions. Finally the characterization of the solid products of gold and silver formed during the EC process with Scanning Electronic Microscope was performed. Results suggest that magnetite particles and amorphous iron oxyhydroxides (lepidocrocite) were present.展开更多
Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs wit...Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs with different crystal structures, morphologies, and TM combinations can exhibit excellent electrochemical properties because of their unique and robust host frameworks with well-defined<100> ionic diffusion channels. Nonetheless, there is still a lack of understanding regarding the performance dependence of TM-PBAs on structural changes during charging/discharging processes. In this study, in situ X-ray diffraction and X-ray absorption fine structure analyses elucidate the TMdependent structural changes in a series of TM-PBAs during the charging and discharging processes.During the discharging process, the lattice volume of Fe-PBA increased while those of Ni-and Cu-PBAs decreased. This discrepancy is attributed to the extent of size reduction of the cyanometallate complex([Fe(CN)_(6)]) via pi-backbonding from Fe to C due to redox flips of the low-spin Fe^(3+/2+) ion. This study presents a comprehensive understanding of how TM selection affects capacity acquisition and phase transition in TM-PBAs, a promising class of cathode materials.展开更多
Cassava flours are obtained from the roots of Manihot esculenta Crantz and daily fairly consumed by the Brazilian population considering it comes to hum food, and also inserted into food baskets, besides to present lo...Cassava flours are obtained from the roots of Manihot esculenta Crantz and daily fairly consumed by the Brazilian population considering it comes to hum food, and also inserted into food baskets, besides to present low cost and easy access, in addition to being plant easily cultivated by the population. However, the food obtained with cassava may contain hydrocyanic acid, in the form of cyanogenic glycoside when those meals are not cooked properly. The oral toxicity can range 30 - 210 mg/kg body, the average daily consumption per capita in larger rural areas than in urban areas for cassava flour 19.1 g against 4.7 g, respectively. Brazil’s North and Northeast have higher consumption of cassava flour, associated with family monthly monetary income, making this region more vulnerable to poisoning. The objective of this study was to quantify cyanogenic glycosides present in some types of Brazilian cassava foods by means of spectrophotometric technique (reading at a wavelength of 530 nm). For quantitative determination of cyanide content, linamarase hydrolysis was used. The amount of cyanide was determined, and results were: artisan toasted cassava flour: 15 mg/500g, sweet cassava starch: 32.5 mg/500g, artisan dried cassava flour: 37.5 mg/500g, “bijuzada” cassava flour: 60 mg/500g, industrialized, toasted cassava flour: 115 mg/500g, industrialized, raw cassava flour: 140 mg/500g, and wet cassava flour: 225 mg/500g. Considering the chronic ingestion of cyanide present in these foods, they can cause public health problems.展开更多
The conventional processes for recovery of silver from cyanide leach solutions are the carbon adsorption, the Merrill-Crowe zinc dust cementation, the Ion Exchange, and Solvent Extraction processes;among other availab...The conventional processes for recovery of silver from cyanide leach solutions are the carbon adsorption, the Merrill-Crowe zinc dust cementation, the Ion Exchange, and Solvent Extraction processes;among other available options for recovery of precious metals from cyanide solutions, Electrocoagulation (EC) is a very promising electrochemical process that does not require high concentrations of silver in cyanide solutions to yield excellent results and neither pretreatment of cyanide solutions like Merrill-Crowe process (deoxygenating and clarification). The present study has been done for the recovery of silver contained in pregnant solution from the cyanidation process using the electrocoagulation technology with iron electrodes, and therefore develops an alternative technology for Merril-Crowe process. The average silver content in pregnant solution was of 52 ppm, recovery was obtained of 99% of silver, with this optimum operating parameters, pH = 8, residence time = 20 minutes and conductivity by addition of sodium chloride = 4 grs/L. Finally the characterization of the solid products formed during the EC process with X-ray Diffraction and Scanning Electronic Microscope was performed, results suggest that magnetite particles and amorphous iron oxyhydroxides are present (Lepidocrocite).展开更多
The syntheses, crystal structures and magnetic properties of two cyano-bridged heterobimetallic compounds prepared from a paramagnetic Ru^Ⅲ building block, transK[Ru^Ⅲ(salchda)(CN)2](1, salchda = N,N'-bis(sal...The syntheses, crystal structures and magnetic properties of two cyano-bridged heterobimetallic compounds prepared from a paramagnetic Ru^Ⅲ building block, transK[Ru^Ⅲ(salchda)(CN)2](1, salchda = N,N'-bis(salicylidene)-o-cyclohexylenediamine), are described.1 reacts with hydrated CoCl2 and [Mn Ⅲ(salchda)(Cl)(H2O)] in MeOH to produce a trinuclear compound {[Ru^Ⅲ(salchda)(CN)]2(μ-CN)2[Co(MeOH)4]·4MeOH}n(2) and a dinuclear{[Ru^Ⅲ(salchda)(CN)](μ-CN)[Mn^Ⅲ(salchda)(MeOH)]·2MeOH}n(3), respectively. Both compounds exhibit intramolecular ferromagnetic coupling between Ru^Ⅲ and 3-d metal centers via the cyano bridge and intermolecular antiferromagnetic coupling. Moreover, 2 exhibits antiferromagnetic ordering below 3.4 K.展开更多
The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their...The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.展开更多
Large amounts of cyanide tailings are produced during the cyanidation process in gold extraction,which are hazardous solid wastes due to the toxic cyanide.Pyrite is one of the main minerals in cyanide tailings.The rem...Large amounts of cyanide tailings are produced during the cyanidation process in gold extraction,which are hazardous solid wastes due to the toxic cyanide.Pyrite is one of the main minerals in cyanide tailings.The removal of cyanide adsorbed on pyrite by H_2O_2 oxidation under alkaline conditions was investigated in this study.It was found that the removal efficiency was positively correlated with pH from 5 to 12,but remained almost constant when pH was higher than 12.The highest cyanide removal efficiency of 91.10% was achieved by adding no less than 0.6 wt.% of H_2O_2.Cyanide removal was positively correlated with the CN^-adsorption amount between 1.06 and 8.5 mg/g,and temperature between 25 and 85°C.The removal of cyanide adsorbed on pyrite by H_2O_2 oxidation under alkaline conditions was due to the oxidation of pyrite.Hexacyanoferrate,thiocyanate and sulfate were generated with mole ratios of about 2.03:1.12:3.17 during the cyanide removal.?2018 The Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences.展开更多
The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems...The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems was demonstrated. Severe interference by the copper containing sulphides with cyanide leaching of gold is observed at p(NaCN)〈5 g/L. This is consistent with speciation calculations. Ammonia pretreatment is shown to readily eliminate the copper interference, allowing almost complete extraction of gold with concomitantly low reagent consumption in subsequent cyanide leaching. In ammoniacal cyanide system, Box-Behnken experimental design shows the main and interaction effects of NH3, NaCN and Pb(NO3)2. The concentrations of NH3 and NaCN are statistically confirmed to be significant factors affecting extraction of gold while the effect of Pb(NO3)2 is limited. Increasing the concentration of NH3 improves the selectivity and extent of gold extraction and reduces the cyanide consumption. The contribution of reagent interactions to gold extraction is statistically insignificant. These findings highlight that ammonia pretreatment and ammonia-cyanide leaching are promising approaches for the treatment of gold ores with high copper sulphide content.展开更多
The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation result...The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.展开更多
Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanid...Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.展开更多
Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to...Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baical- ensis Georgi at concentrations of 18.98, 37.36, and 75.92 gg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive pro- duction of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na+-K*-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide.展开更多
Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was exam...Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was examined by XRD, DSC-TG, and chemical analysis technologies. In the absence of ferric oxide, sodium cyanide decomposes at 587.4 ℃ in air and 879.2 ℃ in argon atmosphere. In the presence of ferric oxide, about 60% of sodium cyanide decomposes at 350 ℃ for 30 min in argon, while almost all sodium cyanide decomposes within 30 min in air or O2 with mass ratio of ferric oxide to sodium cyanide of 1:1. The increase of ferric oxide addition, temperature, and heating time facilitates the destruction of sodium cyanide. It is believed that with ferric oxide addition, NaCN reacts with Fe2O3 to form Na4Fe(CN)6, Na2CO3, NaNO2 and Fe3O4 in argon. NaCN decomposes into NaCNO, Na4Fe(CN)6, minor NaNO2, and the formed NaCNO and Na4Fe(CN)6 further decompose into Na2CO3, CO2, N2, FeOx, and minor NOx in air or O2.展开更多
The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrati...The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrations was examined and the stoichiometric extraction constant of Cu(CN)32- with LIX 7950 was calculated.Both the distribution coefficient and the stoichiometric extraction constant of Cu(CN)3 2-with LIX 7950 decrease when the temperature is varied from 25℃to 45℃, indicating the extraction process is exothermic.The calculated enthalpy change of the reaction(-HΘ)is about-190 kJ/mol.The copper extraction isotherms under different molar ratios of cyanide to copper are established.The preferential extraction of Cu(CN)32- over Cu(CN)4 3-and CN -has been confirmed and a high cyanide-to-copper molar ratio tends to suppress copper loading. The loaded copper and cyanide can be stripped efficiently by the moderately strong NaOH solutions(0.5-1.0 mol/L)and the presence of NaCN in the stripping solution facilitates copper stripping.展开更多
基金supported by the grant of the Basic Research Program of the Korea Science & Engineering Foundation (No R01-2006-000-10284-0)
文摘Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and removal of Cu (0.095 mmol/L) were investigated as a function of Fe(Ⅵ) doses from 0.3-2.00 mmol/L at pH 10.0. It was found that Fe(Ⅵ) could readily oxidize CN and the reduction of Fe(Ⅵ) into Fe(Ⅲ) might serve efficiently for the removal of free copper ions. The increase in Fe(Ⅵ) dose apparently favoured the CN oxidation as well as Cu removal. Moreover, the pH dependence study (pH 10.0-13.0) revealed that the oxidation of CN was almost unaffected in the studied pH range (10.0-13.0), however, the maximum removal efficiency of Cu was obtained at pH 13.0. Similarly, treatment was carded out for CN-Ni system having the initial Ni concentration of 0.170 mmol/L and CN concentration of 1.00 mmol with Fe(Ⅵ) dose 2.00 mmol at various pH values (10.0-12.0). Results showed a partial oxidation of CN and partial removal of Ni. It can be observed that Fe(Ⅵ) can partially degrade the CN-Ni complex in this pH range. Further, Fe(Ⅵ) was applied for the treatment of simulated industrial waste/effluent waters treatment containing CN, Cu, and Ni.
基金financially supported by the National Natural Science Foundation of China(No.21602046)the Zhongjing Youth Talent Project from Henan University of Chinese Medicine(No.03104150-2024-1-52)the Foundation for University Key Teachers from the Education Department of Henan Province(No.2020GGJS107)。
文摘Phenanthridine is a key structural motif in numerous natural products and biologically active compounds,making it an attractive target for pharmaceuticals and advanced materials.Recently,visible-light-induced cyclization through radical process has emerged as a powerful and sustainable strategy for building such a core under mild and environmentally friendly conditions,paving the way for new applications in synthetic and medicinal chemistry.This review highlights recent progress in the photochemical synthesis of phenanthridines,mainly focusing on various radical acceptors,including 2-isocyanobiaryls,cyanides,vinyl azides and vinyl benzotriazoles.
基金supported by the National Key R&D Program of China(No.2020YFC1909203)the Hunan Provincial Innovation Project,China(No.CX20230213)。
文摘A process for treating cyanide tailings was proposed.The process essentially implicates reduction smelting which involves volatilizing silver,lead,and zinc in the cyanide tailings at high temperatures.Meanwhile,gold and copper combine with the reduced iron to form a metal phase,allowing for the simultaneous recovery of polymetallic elements.The experimental results indicate that the process works optimally with a coke powder of 7.5 wt.%,an alkalinity of 1.0,a melting temperature of 1450℃,and a melting time of 60 min.Under these conditions,more than 99% of gold,77% of copper and 94% of iron are incorporated into pig iron.In the meantime,the volatilization rate of silver exceeds 90%,while lead and zinc are essentially completely volatilized.The primary component of the by-product smelting slag is akermanite,which exhibits lower leaching toxicity than the national standard and belongs to general solid waste.Additionally,taking the trapping process of iron to copper as a case study,the mechanism of iron trapping is methodically examined and divided into three processes:smelting reduction,migration capture,and condensation deposition.
基金supported by the Key Research and Development Program of Hebei Province(No.21373702D)the Key Science and Technology Program of HBIS Group Co.,Ltd.(No.HG2021117)+1 种基金the National Natural Science Foundation of China(No.52370124)the National Key R&D Program of China(No.2023YFC3707003).
文摘About 70%of the flue gas in the iron-steel industry has achieved multi-pollutant ultra-low emissions in China until 2023,and then the blast furnace gas purification has become the control step and bottleneck.Our research group has designed and constructed the world’s first blast furnace gas desulfurization pilot plant with the scale of 2000 Nm^(3)/h in October 2021.The pilot plant is a two-step combined desulfurization device including catalytic hydrolysis of carbonyl sulfur(COS)and absorption-oxidation of H_(2)S,continuously running for 120 days.In the hydrolysis system,one reason for catalyst deactivation has been verified from the sulfur deposition.HCN in blast furnace gas can be hydrolyzed on the hydrolysis catalyst to produce the nitrogen deposition,which is one of the reasons for catalyst deactivation and has never been found in previous studies.The deposition forms of S and N elements are determined,S element forms elemental sulfur and sulfate,while N element forms-NH_(2)and NH_(4)^(+).In the absorption-oxidation system,the O_(2)loading and the residence time have been optimized to control the oxidation of HS^(−)to produce elemental sulfur instead of by-product S_(2)O_(3)^(2−).The balance and distribution of S and N elements have been calculated for thewholemulti-phase system,approximately 84.4%of the sulfur is converted to solid sulfur product,about 1.3%of the sulfur and 19.2%of N element are deposited on the hydrolysis catalyst.The pilot plant provides technical support formulti-pollutant control of blast furnace.
基金Projects(ZR2010EL006,Y2007F60) supported by the National Science Foundation of Shandong Province of ChinaProject(J12LA04) supported by High Education Science Technology Program of Shandong Province,China
文摘Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 ~C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.
文摘This report describes triethylammonium acetate (TEAA) ionic liquid catalyzed one pot synthesis of 6-amino-4-aryl-5-cyano-3- methyl-1-phenyl-1,4-dihydropyrano [2,3-c]pyrazoles by the reaction of aromatic aldehyde, malononitrile and 3-methyl-1-phenyl-2- pyrazolin-5-one at room temperature. TEAA plays dual role as reaction media and catalyst. It can also be easily recovered and reused in several runs. TEAA provides greener reaction protocol to present methodology which obviates the need of organic solvents, expensive and toxic catalyst.
基金supported by the Ghana Government via the Ghana Education Trust Fund Scholarship (GET Fund)the University of Mines and Technology (UMaT)
文摘Granular activated carbons were produced from palm nut shells by physical activation with steam. The proximate analysis of palm nut shells was investigated by thermogravimetric analysis, and the adsorption capacity of the activated carbons, produced as a result of shell pyrolysis at 600℃ followed by steam activation at 900℃ in varying activation times, was evaluated using nitrogen adsorption at 77 K. Applicability of the activated carbons for gold dicyanide adsorption was also investigated. Increasing the activation hold time with the attendant increase in the degree of carbon burn-off results in a progressive increase in the surface area of the activated carbons, reaching a value of 903.1 m2/g after activation for 6 h. The volumes of total pores, mieropores, and mesopores in the activated carbons also increase progressively with the increasing degree of carbon burn-off, resulting from increasing the activation hold time. The gold di-cyanide adsorption of the activated carbons increases with the rise of pore volume of the activated carbons. The gold di-cyanide adsorption of palm nut shell activated carbon obtained after 6-h activation at 900℃ is superior to that of a commercial activated carbon used for gold di-cyanide adsorption.
文摘Over the past decade the concern about toxic metals in freshwater has increased. Environmental laws such as the Clean Water Act have forced industries that produce metal containing wastewater to treat their wastewater prior to discharge. The purpose of this study was to investigate the use of a novel method for the minimization of heavy metals in the wastewater from the mining industry. A very promising electrochemical treatment technique that does not require chemical additions is electrocoagulation (EC) and sulphide precipitation. The present study has been done for the recovery of gold and silver contained in pregnant solution from the cyanidation process using the electrocoagulation technology with iron electrodes;that is a developed alternative technology for the Merril-Crowe process. The average gold and silver content in pregnant solution was 4.27 and 283 ppm respectively and the recoveries were 92% for gold and 95% for silver, with optimum operating parameters of pH 10, residence time of 20 minutes and addition of sodium chloride of 4 gr/L. The results of precipitation process show that the elimination of lead, zinc, cooper and iron ions from the barren solution was successful, with optimum operating parameters of pH 3 and residence time of 15 minutes, and the recoveries were 99% of these ions. Finally the characterization of the solid products of gold and silver formed during the EC process with Scanning Electronic Microscope was performed. Results suggest that magnetite particles and amorphous iron oxyhydroxides (lepidocrocite) were present.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT)(NRF-2021R1G1A1092280 and NRF2019R1A6A3A03031343)the Dongil Culture and Scholarship Foundationthe technical support provided at 1-D(KIST-PAL XRD and XAFS)and 7-D beamlines(XAFS)of the Pohang Light Source-II at the Pohang Accelerating Laboratory。
文摘Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs with different crystal structures, morphologies, and TM combinations can exhibit excellent electrochemical properties because of their unique and robust host frameworks with well-defined<100> ionic diffusion channels. Nonetheless, there is still a lack of understanding regarding the performance dependence of TM-PBAs on structural changes during charging/discharging processes. In this study, in situ X-ray diffraction and X-ray absorption fine structure analyses elucidate the TMdependent structural changes in a series of TM-PBAs during the charging and discharging processes.During the discharging process, the lattice volume of Fe-PBA increased while those of Ni-and Cu-PBAs decreased. This discrepancy is attributed to the extent of size reduction of the cyanometallate complex([Fe(CN)_(6)]) via pi-backbonding from Fe to C due to redox flips of the low-spin Fe^(3+/2+) ion. This study presents a comprehensive understanding of how TM selection affects capacity acquisition and phase transition in TM-PBAs, a promising class of cathode materials.
文摘Cassava flours are obtained from the roots of Manihot esculenta Crantz and daily fairly consumed by the Brazilian population considering it comes to hum food, and also inserted into food baskets, besides to present low cost and easy access, in addition to being plant easily cultivated by the population. However, the food obtained with cassava may contain hydrocyanic acid, in the form of cyanogenic glycoside when those meals are not cooked properly. The oral toxicity can range 30 - 210 mg/kg body, the average daily consumption per capita in larger rural areas than in urban areas for cassava flour 19.1 g against 4.7 g, respectively. Brazil’s North and Northeast have higher consumption of cassava flour, associated with family monthly monetary income, making this region more vulnerable to poisoning. The objective of this study was to quantify cyanogenic glycosides present in some types of Brazilian cassava foods by means of spectrophotometric technique (reading at a wavelength of 530 nm). For quantitative determination of cyanide content, linamarase hydrolysis was used. The amount of cyanide was determined, and results were: artisan toasted cassava flour: 15 mg/500g, sweet cassava starch: 32.5 mg/500g, artisan dried cassava flour: 37.5 mg/500g, “bijuzada” cassava flour: 60 mg/500g, industrialized, toasted cassava flour: 115 mg/500g, industrialized, raw cassava flour: 140 mg/500g, and wet cassava flour: 225 mg/500g. Considering the chronic ingestion of cyanide present in these foods, they can cause public health problems.
文摘The conventional processes for recovery of silver from cyanide leach solutions are the carbon adsorption, the Merrill-Crowe zinc dust cementation, the Ion Exchange, and Solvent Extraction processes;among other available options for recovery of precious metals from cyanide solutions, Electrocoagulation (EC) is a very promising electrochemical process that does not require high concentrations of silver in cyanide solutions to yield excellent results and neither pretreatment of cyanide solutions like Merrill-Crowe process (deoxygenating and clarification). The present study has been done for the recovery of silver contained in pregnant solution from the cyanidation process using the electrocoagulation technology with iron electrodes, and therefore develops an alternative technology for Merril-Crowe process. The average silver content in pregnant solution was of 52 ppm, recovery was obtained of 99% of silver, with this optimum operating parameters, pH = 8, residence time = 20 minutes and conductivity by addition of sodium chloride = 4 grs/L. Finally the characterization of the solid products formed during the EC process with X-ray Diffraction and Scanning Electronic Microscope was performed, results suggest that magnetite particles and amorphous iron oxyhydroxides are present (Lepidocrocite).
基金supported by the financial support of National Natural Science Foundation of China(21201023)the scientific research fund of Hubei Provincial Education Department(D20131202)
文摘The syntheses, crystal structures and magnetic properties of two cyano-bridged heterobimetallic compounds prepared from a paramagnetic Ru^Ⅲ building block, transK[Ru^Ⅲ(salchda)(CN)2](1, salchda = N,N'-bis(salicylidene)-o-cyclohexylenediamine), are described.1 reacts with hydrated CoCl2 and [Mn Ⅲ(salchda)(Cl)(H2O)] in MeOH to produce a trinuclear compound {[Ru^Ⅲ(salchda)(CN)]2(μ-CN)2[Co(MeOH)4]·4MeOH}n(2) and a dinuclear{[Ru^Ⅲ(salchda)(CN)](μ-CN)[Mn^Ⅲ(salchda)(MeOH)]·2MeOH}n(3), respectively. Both compounds exhibit intramolecular ferromagnetic coupling between Ru^Ⅲ and 3-d metal centers via the cyano bridge and intermolecular antiferromagnetic coupling. Moreover, 2 exhibits antiferromagnetic ordering below 3.4 K.
基金This work was supported by the National Key Basic Research Special Foundation (No.2007CB815202 and No.2009CB220010) and the National Natural Science Foundation of China (No.20833008).
文摘The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.
基金supported by the National Key Research and Development Program of China (No. 2017YFC0703200)
文摘Large amounts of cyanide tailings are produced during the cyanidation process in gold extraction,which are hazardous solid wastes due to the toxic cyanide.Pyrite is one of the main minerals in cyanide tailings.The removal of cyanide adsorbed on pyrite by H_2O_2 oxidation under alkaline conditions was investigated in this study.It was found that the removal efficiency was positively correlated with pH from 5 to 12,but remained almost constant when pH was higher than 12.The highest cyanide removal efficiency of 91.10% was achieved by adding no less than 0.6 wt.% of H_2O_2.Cyanide removal was positively correlated with the CN^-adsorption amount between 1.06 and 8.5 mg/g,and temperature between 25 and 85°C.The removal of cyanide adsorbed on pyrite by H_2O_2 oxidation under alkaline conditions was due to the oxidation of pyrite.Hexacyanoferrate,thiocyanate and sulfate were generated with mole ratios of about 2.03:1.12:3.17 during the cyanide removal.?2018 The Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences.
基金The Scientific and Technological Research Council of Turkey (TUBITAK) for providing financial support via a S&T research project (Project No. 213M492)
文摘The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems was demonstrated. Severe interference by the copper containing sulphides with cyanide leaching of gold is observed at p(NaCN)〈5 g/L. This is consistent with speciation calculations. Ammonia pretreatment is shown to readily eliminate the copper interference, allowing almost complete extraction of gold with concomitantly low reagent consumption in subsequent cyanide leaching. In ammoniacal cyanide system, Box-Behnken experimental design shows the main and interaction effects of NH3, NaCN and Pb(NO3)2. The concentrations of NH3 and NaCN are statistically confirmed to be significant factors affecting extraction of gold while the effect of Pb(NO3)2 is limited. Increasing the concentration of NH3 improves the selectivity and extent of gold extraction and reduces the cyanide consumption. The contribution of reagent interactions to gold extraction is statistically insignificant. These findings highlight that ammonia pretreatment and ammonia-cyanide leaching are promising approaches for the treatment of gold ores with high copper sulphide content.
基金Project(51764045)supported by the National Natural Science Foundation of ChinaProject(NJYT-18-B08)supported by Inner Mongolia Young Science&Technology Talent Support Plan,China+1 种基金Project(GK-201804)supported by Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProject(DD20190574)supported by China Geological Survey Project
文摘The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.
基金Project(2019YFC1908400)supported by the National Key Research and Development Program of ChinaProject(2018BDE02050)supported by the Key Research and Development Program of Ningxia Hui Autonomous Region,China+1 种基金Project(2302018FRF-TP-18-095A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2018-XY-14)supported by the Special Funds for Scientific and Technological Consultation of Academicians,China。
文摘Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.
文摘Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baical- ensis Georgi at concentrations of 18.98, 37.36, and 75.92 gg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive pro- duction of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na+-K*-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide.
基金financial supports from the National Key R&D Program of China (2018YFC0604604)the National Natural Science Foundation of China-Yunnan Joint Fund (U1702252)+1 种基金the Fundamental Research Funds for Central Universities of China (N182506003)the Key Scientific Research Project of Liaoning Province,China (2019JH2/10300051)。
文摘Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was examined by XRD, DSC-TG, and chemical analysis technologies. In the absence of ferric oxide, sodium cyanide decomposes at 587.4 ℃ in air and 879.2 ℃ in argon atmosphere. In the presence of ferric oxide, about 60% of sodium cyanide decomposes at 350 ℃ for 30 min in argon, while almost all sodium cyanide decomposes within 30 min in air or O2 with mass ratio of ferric oxide to sodium cyanide of 1:1. The increase of ferric oxide addition, temperature, and heating time facilitates the destruction of sodium cyanide. It is believed that with ferric oxide addition, NaCN reacts with Fe2O3 to form Na4Fe(CN)6, Na2CO3, NaNO2 and Fe3O4 in argon. NaCN decomposes into NaCNO, Na4Fe(CN)6, minor NaNO2, and the formed NaCNO and Na4Fe(CN)6 further decompose into Na2CO3, CO2, N2, FeOx, and minor NOx in air or O2.
文摘The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrations was examined and the stoichiometric extraction constant of Cu(CN)32- with LIX 7950 was calculated.Both the distribution coefficient and the stoichiometric extraction constant of Cu(CN)3 2-with LIX 7950 decrease when the temperature is varied from 25℃to 45℃, indicating the extraction process is exothermic.The calculated enthalpy change of the reaction(-HΘ)is about-190 kJ/mol.The copper extraction isotherms under different molar ratios of cyanide to copper are established.The preferential extraction of Cu(CN)32- over Cu(CN)4 3-and CN -has been confirmed and a high cyanide-to-copper molar ratio tends to suppress copper loading. The loaded copper and cyanide can be stripped efficiently by the moderately strong NaOH solutions(0.5-1.0 mol/L)and the presence of NaCN in the stripping solution facilitates copper stripping.