Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi...Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.展开更多
This Special Topic of the Journal of Semiconductors(JOS)features expanded versions of key articles presented at the 2024 IEEE International Conference on Integrated Circuits Technologies and Applications(ICTA),which w...This Special Topic of the Journal of Semiconductors(JOS)features expanded versions of key articles presented at the 2024 IEEE International Conference on Integrated Circuits Technologies and Applications(ICTA),which was held in Hangzhou,Zhejiang,China,from October 25 to 27,2024.展开更多
Strand displacement-based DNA circuits have emerged as highly effective tools for molecular computation,serving purposes of amplification or decision-making.They are favored for their inherent occurrence and sensitivi...Strand displacement-based DNA circuits have emerged as highly effective tools for molecular computation,serving purposes of amplification or decision-making.They are favored for their inherent occurrence and sensitivity to external conditions.However,achieving enhanced amplification or decision-making necessitates the incorporation of multiple strands,thereby increasing the risk of contamination.Recent advancements have led to the development of CRISPR-Cas-based DNA circuits.These systems aim to simplify the complexity associated with conventional circuits,mitigate contamination risks,and enable more substantial amplification or decision-making capabilities.Here,the review article centers on current strategies of CRISPR-Cas(Cas9,Cas12a,Cas13a)system-assisted circuits in amplification and decisionmaking,and assesses their tendencies and limitations in amplification circuits and decision-making circuits.Furthermore,we discuss the challenges of CRISPR-Cas in circuits and propose prospects that will contribute to constructing more efficient and diverse CRISPR-Cas-based DNA functional circuits.展开更多
We investigate the topological properties of the non-Hermitian Kitaev chain by exploiting the versatility of the circuit.We implement non-reciprocal coupling through a negative impedance converter with current inversi...We investigate the topological properties of the non-Hermitian Kitaev chain by exploiting the versatility of the circuit.We implement non-reciprocal coupling through a negative impedance converter with current inversion(INIC). By conducting impedance measurements between neighboring nodes, we identify both topologically non-trivial and trivial phases within the circuit's admittance band dispersion under open boundary conditions(OBC). Our analysis of complex admittance spectra reveals differences when comparing circuits with periodic boundary conditions(PBC) to those with OBC.Furthermore, we observe Z_(2) skin effects and Majorana zero modes in the topologically non-trivial phases, which are robust against disorders. Notably, the admittance spectra exhibit remarkable sensitivity to the attenuation of the boundary coupling strength. This AC circuit system serves as a promising platform for investigating topological phenomena, opening avenues for the development of functional devices across various application scenarios.展开更多
Vocational undergraduate education has entered a new stage of high-quality development,making the cultivation of students'learning ability a core issue in enhancing talent cultivation quality.This study conducted ...Vocational undergraduate education has entered a new stage of high-quality development,making the cultivation of students'learning ability a core issue in enhancing talent cultivation quality.This study conducted a questionnaire survey with 177 students majoring in integrated circuits at Shenzhen Polytechnic University(SZPU),focusing on six dimensions:self-learning proficiency,academic competence,goal planning,self-discipline,learning initiative,and learning environment.The results indicate that while students possess a solid learning foundation and clear career planning,significant deficiencies exist in the execution of academic plans,self-discipline,and learning initiative.In response to these issues,this study proposes four systematic improvement pathways from the institutional perspective:establishing a closed-loop academic navigation system incorporating“goal-process-feedback”,creating an immersive“virtual-physical integrated”learning environment,implementing a multi-dimensional“cognitive-affective-practical”initiative activation plan,and building a synergistic cultivation mechanism for“self-discipline and core competencies”.The findings aim to provide references for talent cultivation and teaching reform in vocational undergraduate integrated circuit programs.展开更多
With the rapid development of electronic information engineering,high-speed digital circuits have been increasingly widely applied in various fields.In high-speed digital circuits,signal integrity is prone to interfer...With the rapid development of electronic information engineering,high-speed digital circuits have been increasingly widely applied in various fields.In high-speed digital circuits,signal integrity is prone to interference from various external factors,leading to issues such as signal distortion or degradation of system performance.Based on this,this paper conducts research on the optimization strategies for signal integrity of high-speed digital circuits in electronic information engineering.It deeply analyzes the importance of high-speed digital circuits,elaborates on the challenges they face and the specific manifestations of signal integrity issues,and proposes a series of optimization strategies in electronic information engineering.The aim is to improve the signal integrity of highspeed digital circuits and provide theoretical support and practical guidance for the development of related fields.展开更多
With the rapid scaling of superconducting quantum processors,electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density,power consumption,and crosstalk mitig...With the rapid scaling of superconducting quantum processors,electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density,power consumption,and crosstalk mitigation.Here we present a custom dual-channel direct current(DC)source module(QPower)dedicated to large-scale superconducting quantum processors.The module delivers a voltage range of±7 V with 200 m A maximum current per channel,while achieving the following key performance benchmarks:noise spectral density of√Hz at 10 k Hz,output ripple<500μV_(pp)within 20 MHz bandwidth,and long-term voltage drift<5μVpp over 12 hours.Integrated into the control electronics of a 66-qubit quantum processor,QPower enables qubit coherence time of T_(1)=87.6μs and Ramsey dephasing time of T_(2)=5.1μs,with qubit resonance frequency drift constrained to±40 k Hz during 12-hour operation.This modular design is compact in size and efficient in energy consumption,providing a scalable DC source solution for intermediate-scale quantum processors with stringent noise and stability requirements,with potential extensions to other quantum hardware platforms and precision measurement systems.展开更多
The single-molecule detection tech-nique plays a pivotal role in elucidat-ing the fundamental mechanisms of various scientific processes at the molecular level,and holds essential im-portance in multiple fields includ...The single-molecule detection tech-nique plays a pivotal role in elucidat-ing the fundamental mechanisms of various scientific processes at the molecular level,and holds essential im-portance in multiple fields including physics,biology,and chemistry.Re-cently,single-molecule detection has garnered increasing attention owing to its practical utility in medical diagno-sis,primarily due to its exceptional sensitivity and the minimal sample volume required for analysis.However,the conventional single-molecule technique,represented by total internal reflection microscopy,faces challenges such as sophisticated operation procedures and limited detection throughput,thereby impeding its broader application.To address these limitations,we have demonstrated single-molecule detection using an integrated silicon photonic chip,of-fering a cost-effective and user-friendly alternative.By employing basic optics,we efficiently introduce the excitation source for single-molecule fluorescence by harnessing the strong evanescent field of high refractive-index waveguides.Subsequently,fluorescence signals are collected using basic optics comprising a water-immersion objective,relay optics,and a digi-tal camera.Our results highlight a low-cost,high-throughput single-molecule technique achieved through the integrated silicon photonic chip.This innovative approach is promised to facilitate the widespread adoption of single-molecule fluorescence in medical diagnosis.展开更多
The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor indu...The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor industry entering into sub-10 nm technology nodes,degrading device performance and increasing power consumption give rise to insurmountable roadblocks confronted by modern ICs that need to be conquered to sustain the Moore law's life.Bulk semiconductors like prevalent Si are plagued by seriously degraded carrier mobility as thickness thinning down to sub-5 nm,which is imperative to maintain sufficient gate electrostatic controllability to combat the increasingly degraded short channel effects.Nowadays,the emergence of two-dimensional(2D)materials opens up new gateway to eschew the hurdles laid in front of the scaling trend of modern IC,mainly ascribed to their ultimately atomic thickness,capability to maintain carrier mobility with thickness thinning down,dangling-bonds free surface,wide bandgaps tunability and feasibility to constitute diverse heterostructures.Blossoming breakthroughs in discrete electronic device,such as contact engineering,dielectric integration and vigorous channel-length scaling,or large circuits arrays,as boosted yields,improved variations and full-functioned processor fabrication,based on 2D materials have been achieved nowadays,facilitating 2D materials to step under the spotlight of IC industry to be treated as the most potential future successor or complementary counterpart of incumbent Si to further sustain the down-scaling of modern IC.展开更多
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju...Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.展开更多
This article proposes a multi-tiered fault detection system for series-connected lithium-ion battery modules.Improper use of batteries can lead to electrolyte decomposition,resulting in the formation of lithium dendri...This article proposes a multi-tiered fault detection system for series-connected lithium-ion battery modules.Improper use of batteries can lead to electrolyte decomposition,resulting in the formation of lithium dendrites.These dendrites may pierce the separator,leading to the failure of the insulation layer between electrodes and causing micro short circuits.When a micro short circuit occurs,the electrolyte typically undergoes exothermic reactions,leading to thermal runaway and posing a safety risk to users.Relying solely on temperature-based judgment mechanisms within the battery management system often results in delayed intervention.To address this issue,the article develops a multi-tiered fault detection algorithm for series-connected lithium-ion batteries.This algorithm can effectively diagnose micro short circuits,aging,and normal batteries using minimal battery data,thereby improving diagnostic accuracy and enhancing the flexibility of fault detection.Simulations and experiments conducted under various levels of micro short circuits validate the effectiveness of the algorithm,demonstrating its ability to distinguish between short-circuited,aged,and normal batteries under different conditions.This technology can be applied to electric vehicles and energy storage systems,enabling early warnings to ensure safety and prevent thermal runaway.展开更多
Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to t...Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states.This study delves into the intricate interplay between topology and localization within the one-dimensional Su–Schrieffer–Heeger(SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits.Through the application of external alternating current(ac) magnetic fluxes, each transmon undergoes controlled driving,enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and coexisting topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups.展开更多
Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligen...Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the...Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the performance of attacks using quantum computers depends on the efficiency of the quantum circuit of the encryption algorithms,research research on the implementation of quantum circuits is essential.This paper presents a new framework to construct quantum circuits of substitution boxes(S-boxes)using system modeling.We model the quantum circuits of S-boxes using two layers:Toffoli and linear layers.We generate vector spaces based on the values of qubits used in the linear layers and apply them to find quantum circuits.The framework finds the circuit bymatching elements of vector spaces generated fromthe input and output of a given S-box,using the forward search or themeet-in-the-middle strategy.We developed a tool to apply this framework to 4-bit S-boxes.While the 4-bit S-box quantum circuit construction tool LIGHTER-R only finds circuits that can be implemented with four qubits,the proposed tool achieves the circuits with five qubits.The proposed tool can find quantum circuits of 4-bit odd permutations based on the controlled NOT,NOT,and Toffoli gates,whereas LIGHTER-R is unable to perform this task in the same environment.We expect this technique to become a critical step toward optimizing S-box quantum circuits.展开更多
The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic rep...The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.展开更多
The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxi...The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.展开更多
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ...Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.展开更多
DNA circuits are powerful tools in various applications such as logical computation,molecular diagnosis and synthetic biology.Leakage is a major problem in constructing complex DNA circuits.It directly affects the out...DNA circuits are powerful tools in various applications such as logical computation,molecular diagnosis and synthetic biology.Leakage is a major problem in constructing complex DNA circuits.It directly affects the output signal and harms the circuit’s performance significantly.In the traditional DNA circuits,the gate complex is a duplex structure.There are insufficient energy barriers to prevent spontaneous detachment of strands,resulting in a leak prone.Herein,we have developed triplex-structure based DNA circuit with ultra-low leakage and high signal-to-noise ratio(SNR).The triplex structure improves the stability in the absence of input.At the same time,the driving force of the strand displacement cascades reduces the influence of the triplex structure on the desired reaction.The SNR of the DNA circuit was increased to 695,while the desired reaction rate remained 90%of the conventional translator circuit.The triplex-structure mediated leakage prevention strategy was further tested at different temperatures and in DNA translator and seesaw circuits.We also constructed modular basic logic gates with a high efficiency and low leakage.On this basis,we further constructed triplex-structure based tertiary DNA logic circuits,and the SNR reached 295,which,to the best of our knowledge,was among the highest of the field.We believe that our scheme provides a novel,valid,and general tool for reducing leakages,and we anticipate that it will be widely adopted in DNA nanotechnology.展开更多
Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC...Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.展开更多
基金supported by NIH/NIMH grant R01MH111619(to SQ),R21AG078700(to SQ)Institute of Mental Health Research(IMHR,Level 1 funding,to SQ and DF)institution startup fund from The University of Arizona(to SQ)。
文摘Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
文摘This Special Topic of the Journal of Semiconductors(JOS)features expanded versions of key articles presented at the 2024 IEEE International Conference on Integrated Circuits Technologies and Applications(ICTA),which was held in Hangzhou,Zhejiang,China,from October 25 to 27,2024.
基金financially supported by the National Natural Science Foundation of China (Nos. 82172372 and 82260290)the Opening Research Fund of State Key Laboratory of Digital Medical Engineering (No. 2023-M04)
文摘Strand displacement-based DNA circuits have emerged as highly effective tools for molecular computation,serving purposes of amplification or decision-making.They are favored for their inherent occurrence and sensitivity to external conditions.However,achieving enhanced amplification or decision-making necessitates the incorporation of multiple strands,thereby increasing the risk of contamination.Recent advancements have led to the development of CRISPR-Cas-based DNA circuits.These systems aim to simplify the complexity associated with conventional circuits,mitigate contamination risks,and enable more substantial amplification or decision-making capabilities.Here,the review article centers on current strategies of CRISPR-Cas(Cas9,Cas12a,Cas13a)system-assisted circuits in amplification and decisionmaking,and assesses their tendencies and limitations in amplification circuits and decision-making circuits.Furthermore,we discuss the challenges of CRISPR-Cas in circuits and propose prospects that will contribute to constructing more efficient and diverse CRISPR-Cas-based DNA functional circuits.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174157, 12074150, and 12174158)。
文摘We investigate the topological properties of the non-Hermitian Kitaev chain by exploiting the versatility of the circuit.We implement non-reciprocal coupling through a negative impedance converter with current inversion(INIC). By conducting impedance measurements between neighboring nodes, we identify both topologically non-trivial and trivial phases within the circuit's admittance band dispersion under open boundary conditions(OBC). Our analysis of complex admittance spectra reveals differences when comparing circuits with periodic boundary conditions(PBC) to those with OBC.Furthermore, we observe Z_(2) skin effects and Majorana zero modes in the topologically non-trivial phases, which are robust against disorders. Notably, the admittance spectra exhibit remarkable sensitivity to the attenuation of the boundary coupling strength. This AC circuit system serves as a promising platform for investigating topological phenomena, opening avenues for the development of functional devices across various application scenarios.
文摘Vocational undergraduate education has entered a new stage of high-quality development,making the cultivation of students'learning ability a core issue in enhancing talent cultivation quality.This study conducted a questionnaire survey with 177 students majoring in integrated circuits at Shenzhen Polytechnic University(SZPU),focusing on six dimensions:self-learning proficiency,academic competence,goal planning,self-discipline,learning initiative,and learning environment.The results indicate that while students possess a solid learning foundation and clear career planning,significant deficiencies exist in the execution of academic plans,self-discipline,and learning initiative.In response to these issues,this study proposes four systematic improvement pathways from the institutional perspective:establishing a closed-loop academic navigation system incorporating“goal-process-feedback”,creating an immersive“virtual-physical integrated”learning environment,implementing a multi-dimensional“cognitive-affective-practical”initiative activation plan,and building a synergistic cultivation mechanism for“self-discipline and core competencies”.The findings aim to provide references for talent cultivation and teaching reform in vocational undergraduate integrated circuit programs.
文摘With the rapid development of electronic information engineering,high-speed digital circuits have been increasingly widely applied in various fields.In high-speed digital circuits,signal integrity is prone to interference from various external factors,leading to issues such as signal distortion or degradation of system performance.Based on this,this paper conducts research on the optimization strategies for signal integrity of high-speed digital circuits in electronic information engineering.It deeply analyzes the importance of high-speed digital circuits,elaborates on the challenges they face and the specific manifestations of signal integrity issues,and proposes a series of optimization strategies in electronic information engineering.The aim is to improve the signal integrity of highspeed digital circuits and provide theoretical support and practical guidance for the development of related fields.
基金Project supported by the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.KQTD20210811090049034)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301703)。
文摘With the rapid scaling of superconducting quantum processors,electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density,power consumption,and crosstalk mitigation.Here we present a custom dual-channel direct current(DC)source module(QPower)dedicated to large-scale superconducting quantum processors.The module delivers a voltage range of±7 V with 200 m A maximum current per channel,while achieving the following key performance benchmarks:noise spectral density of√Hz at 10 k Hz,output ripple<500μV_(pp)within 20 MHz bandwidth,and long-term voltage drift<5μVpp over 12 hours.Integrated into the control electronics of a 66-qubit quantum processor,QPower enables qubit coherence time of T_(1)=87.6μs and Ramsey dephasing time of T_(2)=5.1μs,with qubit resonance frequency drift constrained to±40 k Hz during 12-hour operation.This modular design is compact in size and efficient in energy consumption,providing a scalable DC source solution for intermediate-scale quantum processors with stringent noise and stability requirements,with potential extensions to other quantum hardware platforms and precision measurement systems.
基金supported by the National Key Research and Development Program(No.2022YFE0107400)the internal research funding from Photonic View Technology Technology Co.,Ltd.the GuangCi Deep Mind Project of Ruijin Hospital Shanghai Jiao Tong University School of Medicine.
文摘The single-molecule detection tech-nique plays a pivotal role in elucidat-ing the fundamental mechanisms of various scientific processes at the molecular level,and holds essential im-portance in multiple fields including physics,biology,and chemistry.Re-cently,single-molecule detection has garnered increasing attention owing to its practical utility in medical diagno-sis,primarily due to its exceptional sensitivity and the minimal sample volume required for analysis.However,the conventional single-molecule technique,represented by total internal reflection microscopy,faces challenges such as sophisticated operation procedures and limited detection throughput,thereby impeding its broader application.To address these limitations,we have demonstrated single-molecule detection using an integrated silicon photonic chip,of-fering a cost-effective and user-friendly alternative.By employing basic optics,we efficiently introduce the excitation source for single-molecule fluorescence by harnessing the strong evanescent field of high refractive-index waveguides.Subsequently,fluorescence signals are collected using basic optics comprising a water-immersion objective,relay optics,and a digi-tal camera.Our results highlight a low-cost,high-throughput single-molecule technique achieved through the integrated silicon photonic chip.This innovative approach is promised to facilitate the widespread adoption of single-molecule fluorescence in medical diagnosis.
基金supported by start-up capital of Ningbo Eastern Institute of technology。
文摘The relentless down-scaling of electronics grands the modern integrated circuits(ICs)with the high speed,low power dissipation and low cost,fulfilling diverse demands of modern life.Whereas,with the semiconductor industry entering into sub-10 nm technology nodes,degrading device performance and increasing power consumption give rise to insurmountable roadblocks confronted by modern ICs that need to be conquered to sustain the Moore law's life.Bulk semiconductors like prevalent Si are plagued by seriously degraded carrier mobility as thickness thinning down to sub-5 nm,which is imperative to maintain sufficient gate electrostatic controllability to combat the increasingly degraded short channel effects.Nowadays,the emergence of two-dimensional(2D)materials opens up new gateway to eschew the hurdles laid in front of the scaling trend of modern IC,mainly ascribed to their ultimately atomic thickness,capability to maintain carrier mobility with thickness thinning down,dangling-bonds free surface,wide bandgaps tunability and feasibility to constitute diverse heterostructures.Blossoming breakthroughs in discrete electronic device,such as contact engineering,dielectric integration and vigorous channel-length scaling,or large circuits arrays,as boosted yields,improved variations and full-functioned processor fabrication,based on 2D materials have been achieved nowadays,facilitating 2D materials to step under the spotlight of IC industry to be treated as the most potential future successor or complementary counterpart of incumbent Si to further sustain the down-scaling of modern IC.
文摘Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.
文摘This article proposes a multi-tiered fault detection system for series-connected lithium-ion battery modules.Improper use of batteries can lead to electrolyte decomposition,resulting in the formation of lithium dendrites.These dendrites may pierce the separator,leading to the failure of the insulation layer between electrodes and causing micro short circuits.When a micro short circuit occurs,the electrolyte typically undergoes exothermic reactions,leading to thermal runaway and posing a safety risk to users.Relying solely on temperature-based judgment mechanisms within the battery management system often results in delayed intervention.To address this issue,the article develops a multi-tiered fault detection algorithm for series-connected lithium-ion batteries.This algorithm can effectively diagnose micro short circuits,aging,and normal batteries using minimal battery data,thereby improving diagnostic accuracy and enhancing the flexibility of fault detection.Simulations and experiments conducted under various levels of micro short circuits validate the effectiveness of the algorithm,demonstrating its ability to distinguish between short-circuited,aged,and normal batteries under different conditions.This technology can be applied to electric vehicles and energy storage systems,enabling early warnings to ensure safety and prevent thermal runaway.
基金Project supported by the Natural Science Foundation of Shanxi Province,China (Grant No. 202103021223010)。
文摘Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states.This study delves into the intricate interplay between topology and localization within the one-dimensional Su–Schrieffer–Heeger(SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits.Through the application of external alternating current(ac) magnetic fluxes, each transmon undergoes controlled driving,enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and coexisting topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups.
文摘Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ITRC(Information Technology Research Center)support program(IITP-2024-RS-2022-00164800)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the performance of attacks using quantum computers depends on the efficiency of the quantum circuit of the encryption algorithms,research research on the implementation of quantum circuits is essential.This paper presents a new framework to construct quantum circuits of substitution boxes(S-boxes)using system modeling.We model the quantum circuits of S-boxes using two layers:Toffoli and linear layers.We generate vector spaces based on the values of qubits used in the linear layers and apply them to find quantum circuits.The framework finds the circuit bymatching elements of vector spaces generated fromthe input and output of a given S-box,using the forward search or themeet-in-the-middle strategy.We developed a tool to apply this framework to 4-bit S-boxes.While the 4-bit S-box quantum circuit construction tool LIGHTER-R only finds circuits that can be implemented with four qubits,the proposed tool achieves the circuits with five qubits.The proposed tool can find quantum circuits of 4-bit odd permutations based on the controlled NOT,NOT,and Toffoli gates,whereas LIGHTER-R is unable to perform this task in the same environment.We expect this technique to become a critical step toward optimizing S-box quantum circuits.
文摘The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
基金the National Natural Science Foundation of China(No.81871732)the National Key Research and Development Program of China(No.2021YFC2701402)+4 种基金the Open Research Fund of State Key Laboratory of Bioelectronics,southeast University(No.Sklb2021-k06)the Open Foundation of NHC Key Laboratory of Birth Defect for Research and Prevention(Hunan Provincial Maternal and Child Health Care Hospital)(No.KF2020007)the Open Foundation of Translational Medicine National Science and Technology Infrastructure(Shanghai)(No.TMSK-2021-141)the Open Fund from Key Laboratory of Cellular Physiology(Shanxi Medical University)Ministry of Education,China(No.CPOF202103).
文摘DNA circuits are powerful tools in various applications such as logical computation,molecular diagnosis and synthetic biology.Leakage is a major problem in constructing complex DNA circuits.It directly affects the output signal and harms the circuit’s performance significantly.In the traditional DNA circuits,the gate complex is a duplex structure.There are insufficient energy barriers to prevent spontaneous detachment of strands,resulting in a leak prone.Herein,we have developed triplex-structure based DNA circuit with ultra-low leakage and high signal-to-noise ratio(SNR).The triplex structure improves the stability in the absence of input.At the same time,the driving force of the strand displacement cascades reduces the influence of the triplex structure on the desired reaction.The SNR of the DNA circuit was increased to 695,while the desired reaction rate remained 90%of the conventional translator circuit.The triplex-structure mediated leakage prevention strategy was further tested at different temperatures and in DNA translator and seesaw circuits.We also constructed modular basic logic gates with a high efficiency and low leakage.On this basis,we further constructed triplex-structure based tertiary DNA logic circuits,and the SNR reached 295,which,to the best of our knowledge,was among the highest of the field.We believe that our scheme provides a novel,valid,and general tool for reducing leakages,and we anticipate that it will be widely adopted in DNA nanotechnology.
文摘Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.