In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies...In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.展开更多
This paper, with NOAA/AHHRR data for 2 years, discusses the expanding path and extent of suspended sediment from the Changjiang River, and the relationship between the suspended sediment expanding and coastal current ...This paper, with NOAA/AHHRR data for 2 years, discusses the expanding path and extent of suspended sediment from the Changjiang River, and the relationship between the suspended sediment expanding and coastal current systems by analyzing the thermal infrared imagery with the sediment imagery, which is acquired by correlating the atmosphere corrected AVHRR imagery with in-situ suspended sediment data. The coastal current systems affecting the sediment dispersal mainly include: the Taiwan Warm Current (TWC), the Huanghai Sea Mixed Water (HSMW), North Jiangsu near-shore current, and Zhejiang near-shore current etc. In winter, the current systems are stable. Their distribution affects the sediment from north Jiangsu expanding toward the Changjiang estuary in some degree .The front between Zhejiang coastal current and TWC blocks the expanding of sediment toward the sea. In the flood season, apart from the limitation by coastal current systems, the spatial and temporal distribution of suspended sediment is also affected by the runoff, which shows as the jet stream and fresh water. Spring and autumn are the transitional periods of the forming of expanding patterns of flood season and winter respectively. In addition, the re-suspended sediment caused by the wind wave may make the expanding range of near-shore sediment larger.展开更多
The S^p_q equivalent current system of the quiet day geomagnetic variation in the polar region is very complicated. It is composed of several currents, such as the ionospheric dynamo current and the auroral electrojet...The S^p_q equivalent current system of the quiet day geomagnetic variation in the polar region is very complicated. It is composed of several currents, such as the ionospheric dynamo current and the auroral electrojet caused by the field aligned current. S p q is unsymmetrical in both polar regions. In this paper, the S p q current systems are analyzed in the corrected geomagnetic coordinates (CGM) instead of the conventional geomagnetic coordinates (GM), and the symmetries of the S p q current in different systems are compared. Then the causes of S p q asymmetry in the GM coordinates are discussed; the effects of each component in S p q are determined.展开更多
Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast...Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast.In this study we introduce an improved method to derive the ECS from a global MHD model,which takes account of the obliqueness of the magnetic field lines.By comparing the ECS derived from this improved method and the previous method,we find that the main characteristics of the ECS derived from the two methods are generally consistent with each other,but the eastward-westward component of the geomagnetic perturbation calculated from the ECS derived from the improved method is much stronger than that from the previous method.We then compare the geomagnetic perturbation as a function of the interplanetary magnetic field(IMF)clock angle calculated from the ECS derived from both methods with the observations.The comparison indicates that the improved method can improve the performance of the simulation.Furthermore,it is found that the incomplete counterbalance of the geomagnetic effect produced by the ionospheric poloidal current and field-aligned current(FAC)contributes to most of the eastward-westward component of geomagnetic perturbation.展开更多
This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The sche...This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.展开更多
As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Neverthe...As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases.展开更多
The main objective of this paper is three-fold.First, to provide an overview of the current status of the power electronics technology, one of the key actors in the upcoming smart grid paradigm enabling maximum power ...The main objective of this paper is three-fold.First, to provide an overview of the current status of the power electronics technology, one of the key actors in the upcoming smart grid paradigm enabling maximum power throughputs and near-instantaneous control of voltages and currents in all links of the power system chain. Second, to provide a bridge between the power systems and the power electronic communities, in terms of their differing appreciation of how these devices perform when connected to the power grid. Third, to discuss on the role that the power electronics technology will play in supporting the aims and objectives of future decarbonized power systems. This paper merges the equipment, control techniques and methods used in flexible alternating current transmission systems(FACTS) and high voltage direct transmission(HVDC) equipment to enable a single, coherent approach to address a specific power system problem, using ‘best of breed’ solutions bearing in mind technical, economic and environmental issues.展开更多
文摘In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.
文摘This paper, with NOAA/AHHRR data for 2 years, discusses the expanding path and extent of suspended sediment from the Changjiang River, and the relationship between the suspended sediment expanding and coastal current systems by analyzing the thermal infrared imagery with the sediment imagery, which is acquired by correlating the atmosphere corrected AVHRR imagery with in-situ suspended sediment data. The coastal current systems affecting the sediment dispersal mainly include: the Taiwan Warm Current (TWC), the Huanghai Sea Mixed Water (HSMW), North Jiangsu near-shore current, and Zhejiang near-shore current etc. In winter, the current systems are stable. Their distribution affects the sediment from north Jiangsu expanding toward the Changjiang estuary in some degree .The front between Zhejiang coastal current and TWC blocks the expanding of sediment toward the sea. In the flood season, apart from the limitation by coastal current systems, the spatial and temporal distribution of suspended sediment is also affected by the runoff, which shows as the jet stream and fresh water. Spring and autumn are the transitional periods of the forming of expanding patterns of flood season and winter respectively. In addition, the re-suspended sediment caused by the wind wave may make the expanding range of near-shore sediment larger.
文摘The S^p_q equivalent current system of the quiet day geomagnetic variation in the polar region is very complicated. It is composed of several currents, such as the ionospheric dynamo current and the auroral electrojet caused by the field aligned current. S p q is unsymmetrical in both polar regions. In this paper, the S p q current systems are analyzed in the corrected geomagnetic coordinates (CGM) instead of the conventional geomagnetic coordinates (GM), and the symmetries of the S p q current in different systems are compared. Then the causes of S p q asymmetry in the GM coordinates are discussed; the effects of each component in S p q are determined.
基金supported by the National Basic Research Program of China(Grant No.2012CB825602)National Natural Science Foundation of China(Grant Nos.41231067&41204110) in part by the Specialized Research Fund for State Key Laboratories of China
文摘Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast.In this study we introduce an improved method to derive the ECS from a global MHD model,which takes account of the obliqueness of the magnetic field lines.By comparing the ECS derived from this improved method and the previous method,we find that the main characteristics of the ECS derived from the two methods are generally consistent with each other,but the eastward-westward component of the geomagnetic perturbation calculated from the ECS derived from the improved method is much stronger than that from the previous method.We then compare the geomagnetic perturbation as a function of the interplanetary magnetic field(IMF)clock angle calculated from the ECS derived from both methods with the observations.The comparison indicates that the improved method can improve the performance of the simulation.Furthermore,it is found that the incomplete counterbalance of the geomagnetic effect produced by the ionospheric poloidal current and field-aligned current(FAC)contributes to most of the eastward-westward component of geomagnetic perturbation.
文摘This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.
基金supported by the Natural Science Foundation of Sichuan Province of China(No.2022NSFSC0262)the Fundamental Research Funds for the Central Universities(No.2022SCU12005).
文摘As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases.
基金supported by Spanish Ministry of Economy and Competitiveness and Junta de Andalucía through the projects ENE2014-54115-R and TEP-7411
文摘The main objective of this paper is three-fold.First, to provide an overview of the current status of the power electronics technology, one of the key actors in the upcoming smart grid paradigm enabling maximum power throughputs and near-instantaneous control of voltages and currents in all links of the power system chain. Second, to provide a bridge between the power systems and the power electronic communities, in terms of their differing appreciation of how these devices perform when connected to the power grid. Third, to discuss on the role that the power electronics technology will play in supporting the aims and objectives of future decarbonized power systems. This paper merges the equipment, control techniques and methods used in flexible alternating current transmission systems(FACTS) and high voltage direct transmission(HVDC) equipment to enable a single, coherent approach to address a specific power system problem, using ‘best of breed’ solutions bearing in mind technical, economic and environmental issues.