随着电网换相型高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)技术的广泛应用,交直流混联电网的谐波交互问题愈加复杂,建立LCC-HVDC小信号模型是分析换流器交直流谐波耦合特性的重要手段。为此...随着电网换相型高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)技术的广泛应用,交直流混联电网的谐波交互问题愈加复杂,建立LCC-HVDC小信号模型是分析换流器交直流谐波耦合特性的重要手段。为此,基于谐波状态空间理论(harmonic state space, HSS)建立双端12脉动LCC-HVDC小信号模型,不仅考虑了LCC谐波传递特性,还考虑了换流变压器联结方式、控制链路延时等因素的影响。采用模块化思想分别建立各子系统谐波状态空间模型,通过接口矩阵连接为整体,使得LCC的谐波状态空间建模在易于扩展的同时,提高了精确度。最后,给出交直流谐波传递的具体表达式,并通过PSCAD仿真验证模型的准确性。所建模型不仅为后续扩展或接入更为复杂的系统奠定了基础,还可应用于双端LCC系统谐波交互稳定性评估和系统参数优化设计。展开更多
为了减少模型预测控制中因死区时间引起的电压和定子电流的误差,在永磁同步电机(permanent magnet synchronous motor,PMSM)模型预测电流控制(model predictive current control,MPCC)基础上采用了一种基于死区电压矢量的优化MPCC方法(d...为了减少模型预测控制中因死区时间引起的电压和定子电流的误差,在永磁同步电机(permanent magnet synchronous motor,PMSM)模型预测电流控制(model predictive current control,MPCC)基础上采用了一种基于死区电压矢量的优化MPCC方法(dead-time voltage vector based MPCC,DTVV-MPCC)。首先介绍了死区时间对MPCC的影响,分析了MPCC中存在的死区电压矢量(dead-time voltage vector,DTVV)的形成过程。其次区分了MPCC性能的有利DTVV和非有利DTVV,并分析了有利DTVV的优势。最后优化了死区作用时间。仿真结果表明该控制方法下的电流稳态控制性能要优于传统的MPCC方法。展开更多
逆变器中死区时间会带来电流谐波和转矩脉动,从而导致感应电机出现明显振动并增加额外损耗。为减少逆变器死区效应带来的不利影响,提出一种基于高阶扩展状态观测器(high-order extended state observer,HO-ESO)的逆变器死区效应在线补...逆变器中死区时间会带来电流谐波和转矩脉动,从而导致感应电机出现明显振动并增加额外损耗。为减少逆变器死区效应带来的不利影响,提出一种基于高阶扩展状态观测器(high-order extended state observer,HO-ESO)的逆变器死区效应在线补偿方法。首先,对逆变器死区效应进行分析,推导出因死区效应而产生的d、q轴误差电压方程。接着,对传统的基于二阶ESO的死区效应补偿方法进行介绍和分析,由分析结果可知,该方法难以准确估计误差电压,从而导致补偿效果欠佳。进一步,设计一种HO-ESO对误差电压进行估计,并将其补偿到感应电机矢量控制系统中。最后,利用仿真和实验测试对所研究的死区效应补偿方法进行验证,并与传统的基于二阶ESO的死区效应补偿法进行对比。测试结果表明,相较于传统基于二阶ESO的死区效应补偿方法,所研究方法表现出更好的死区效应补偿性能。此外,所研究方法无需检测电流极性,易于实施。展开更多
文摘随着电网换相型高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)技术的广泛应用,交直流混联电网的谐波交互问题愈加复杂,建立LCC-HVDC小信号模型是分析换流器交直流谐波耦合特性的重要手段。为此,基于谐波状态空间理论(harmonic state space, HSS)建立双端12脉动LCC-HVDC小信号模型,不仅考虑了LCC谐波传递特性,还考虑了换流变压器联结方式、控制链路延时等因素的影响。采用模块化思想分别建立各子系统谐波状态空间模型,通过接口矩阵连接为整体,使得LCC的谐波状态空间建模在易于扩展的同时,提高了精确度。最后,给出交直流谐波传递的具体表达式,并通过PSCAD仿真验证模型的准确性。所建模型不仅为后续扩展或接入更为复杂的系统奠定了基础,还可应用于双端LCC系统谐波交互稳定性评估和系统参数优化设计。
文摘为了减少模型预测控制中因死区时间引起的电压和定子电流的误差,在永磁同步电机(permanent magnet synchronous motor,PMSM)模型预测电流控制(model predictive current control,MPCC)基础上采用了一种基于死区电压矢量的优化MPCC方法(dead-time voltage vector based MPCC,DTVV-MPCC)。首先介绍了死区时间对MPCC的影响,分析了MPCC中存在的死区电压矢量(dead-time voltage vector,DTVV)的形成过程。其次区分了MPCC性能的有利DTVV和非有利DTVV,并分析了有利DTVV的优势。最后优化了死区作用时间。仿真结果表明该控制方法下的电流稳态控制性能要优于传统的MPCC方法。
文摘逆变器中死区时间会带来电流谐波和转矩脉动,从而导致感应电机出现明显振动并增加额外损耗。为减少逆变器死区效应带来的不利影响,提出一种基于高阶扩展状态观测器(high-order extended state observer,HO-ESO)的逆变器死区效应在线补偿方法。首先,对逆变器死区效应进行分析,推导出因死区效应而产生的d、q轴误差电压方程。接着,对传统的基于二阶ESO的死区效应补偿方法进行介绍和分析,由分析结果可知,该方法难以准确估计误差电压,从而导致补偿效果欠佳。进一步,设计一种HO-ESO对误差电压进行估计,并将其补偿到感应电机矢量控制系统中。最后,利用仿真和实验测试对所研究的死区效应补偿方法进行验证,并与传统的基于二阶ESO的死区效应补偿法进行对比。测试结果表明,相较于传统基于二阶ESO的死区效应补偿方法,所研究方法表现出更好的死区效应补偿性能。此外,所研究方法无需检测电流极性,易于实施。