期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Comprehensive Study of a Low-Grade Heat-Driven Cooling and Power System Based on Heat Current Method 被引量:1
1
作者 ZHAO Tian XU Ronghong +4 位作者 XIN Yonglin HE Kelun MA Huan YUAN Mengdi CHEN Qun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1523-1541,共19页
Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption c... Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance. 展开更多
关键词 combined cooling and power system organic Rankine cycle absorption chiller cascade heat utilization heat current method off-design analysis
原文传递
Operation Optimization of Liquid Cooling Systems in Data Centers by the Heat Current Method and Artificial Neural Network 被引量:3
2
作者 SHAO Wei CHEN Qun +1 位作者 HE Kelun ZHANG Mengqi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期1063-1075,共13页
Liquid cooling systems in data centers have been attracting more attentions due to its better cooling capability and less energy consumption. In order to propose an effective optimization method for the operation of i... Liquid cooling systems in data centers have been attracting more attentions due to its better cooling capability and less energy consumption. In order to propose an effective optimization method for the operation of indirect liquid cooling systems, this paper first constructs an experiment platform and applies the heat current method to build the global heat transfer constraints of the whole system. Particularly, the thermal conductance of each heat exchanger under different working conditions is predicted by the Artificial Neural Networks(ANN) trained by the historical data. On this basis, combining the heat transfer and fluid flow constraints together with the Lagrange multiplier method builds the optimization model with the objective of minimum pumping power consumption(PPC), solving which by the solution strategy designed obtains the optimal frequencies of the variable frequency pumps(VFPs). Operating with the optimal and other feasible operating conditions validates the optimization model. Meanwhile, the experiments with variable heat loads and flow resistances provide some guidelines for the optimal system operation. For instance, to address heat load increase of a branch, it needs to increase the frequencies of the VFPs, not only the corresponding hot loop but also the whole cold loop. 展开更多
关键词 liquid cooling system energy conservation heat current method global heat transfer constraints artificial neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部