Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in...Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in coastal areas, understanding the behavior of the sea environment becomes crucial. In this study, we delve into the generation and movement of marine currents as well as the retention time and water age within the waters of Pagasitikos Sea inlet, Greece, through numerical simulation of hydrodynamic characteristics. The main examined points of the understudy region are the area of the port of Volos, the Trikeri channel where the ingress and egress of water from the Gulf takes place and the exchange of seawater through circulation of the Pagasitikos Gulf with the North Evian Gulf. In order to evaluate the results, they were compared with real field measurements and with simulation on a laboratory dummy of the same area. The computational simulation was performed with the ELCOM 2.2 numerical modeling tool and the AEM3D latest version and the main factors simulated are the tide, the consequence that Coriolis force, boundary conditions, the topography and bottom geometry of the bay and the actual meteorological conditions of a whole year.展开更多
The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interl...The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
Circulating currents in a microgrid increase the power loss of the microgrid, reduce the operational efficiency, as well as affect the power quality of the microgrid. The existing literature is seldom concerned with m...Circulating currents in a microgrid increase the power loss of the microgrid, reduce the operational efficiency, as well as affect the power quality of the microgrid. The existing literature is seldom concerned with methods to suppress the loop currents using fuzzy logic control. In this paper, a method based on fuzzy control of droop coefficients is proposed to suppress the circulating currents inside the microgrid.The method combines fuzzy control with droop control and can achieve the effect of suppressing the circulating currents by adaptively adjusting the droop coefficients to make the power distribution between each subgrid more balanced. To verify the proposed method, simulation is carried out in Matlab/Simulink environment, and the simulation results show that the proposed method is significantly better than the traditional proportional-integral control method. The circulating currents reduce from about 10 A to several nanoamperes, the bus voltage and frequency drops are significantly improved, and the total harmonic distortion rate of the output voltage reduces from 4.66% to 1.06%. In addition, the method used in this paper can be extended to be applied in multiple inverters connected in parallel, and the simulation results show that the method has a good effect on the suppression of circulating currents among multiple inverters.展开更多
Internal solitary waves(ISWs)have considerable energy to drive the mixing of water masses in the Sulu Sea.The propagation speed is one of the critical parameters in quantifying the energy budget of the ISWs.We collect...Internal solitary waves(ISWs)have considerable energy to drive the mixing of water masses in the Sulu Sea.The propagation speed is one of the critical parameters in quantifying the energy budget of the ISWs.We collected 1354 groups of ISWs’speeds from tandem satellite remote sensing images with temporal intervals shorter than 25 min and analyzed their spatial and multi-scale temporal variations in the Sulu Sea.We found that water depth plays an important role in modulating the spatial variation of wave speeds,which increase exponentially with water depth with a power of 0.26.Tidal currents,ocean stratification,background circulation,and climate affect the temporal variations of wave speeds from days to months or years.The fortnightly spring/neap tidal currents cause daily variations of wave speeds up to 40%by modulating the ISW amplitudes.In addition to the well-accepted results that monthly variations of wave speeds are related to density stratification,we found that enhanced stratification increases wave speeds,and the background circulation leads to a maximum decrease of 0.27 m/s in the linear counterparts of wave speed.Moreover,the averaged wave speed collected in October is lower than the corresponding linear one possibly due to some unknown dynamical processes or underestimation of background current.As for the interannual variations,we show that wave speed increases in La Niña years and decreases in El Niño years as a result of the climatic modulation on the depth of the maximum value of buoyancy frequency.展开更多
This research investigated the outputting circulation current inhibition characteristic which are controlled by the instantaneous feedback voltage in inverter parallel driving of the mine hoist. We established a trans...This research investigated the outputting circulation current inhibition characteristic which are controlled by the instantaneous feedback voltage in inverter parallel driving of the mine hoist. We established a transfer function of the parallel inverters controlled by the close-loop adjustment of instantaneous voltage feedback. The influence of the parameters of the close-loop feedback circuit to the inhibition effects to the outputting circulation current is observed. After analyzing the circulating current inhibition characteristics, the proportion integration (PI) controller is introduced into the close-loop adjustment by instantaneous voltage feedback. The characteristics equation is gained to determine the PI parameters by drawing the Bode plots. The inhibition effects of the proposed controller are examined by the established simulation model of parallel inverter system. The harmonic distortion rate at the outputting voltage frequency value of 4, 10, 20, 41 and 50 Hz, are all lower than 2.32 % by the instantaneous outputting voltage feedback.展开更多
The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and compli...The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span&g...Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.展开更多
The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. ...The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon.展开更多
The influence of the Kuroshio on neighboring Chinese seas and the Ryukyu Current is a very important subject of interest in physical oceanography. To deeply explain the research progress made by Chinese scientists fro...The influence of the Kuroshio on neighboring Chinese seas and the Ryukyu Current is a very important subject of interest in physical oceanography. To deeply explain the research progress made by Chinese scientists from July2010 to May 2015, the following three aspects are reviewed in this paper. The first concerns the Kuroshio intrusion into the South China Sea(SCS) and its circulation around the Luzon Strait. There are two very important points to be explained: the seasonal and inter-annual variation of the Kuroshio intrusion and the mechanisms of the Kuroshio intrusion and the influence of the Kuroshio on currents in the Luzon Strait and circulation in the northern SCS. The second concerns the variability of the Kuroshio and its interaction with the East China Sea(ECS). There are following four interesting topics to be explained: an overview of studies on the Kuroshio in the ECS; the Kuroshio intrusion into the ECS, water exchange, and dynamic impacts; the downstream increase of nutrient transport by the Kuroshio; and the application of satellite remote sensing on terrestrial material transport by the Kuroshio intrusion into the ECS. Third, the interaction between the Ryukyu Current and Kuroshio in the ECS are also discussed. Finally, the main results are summarized and areas of further study are simply discussed.展开更多
In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched v...In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.展开更多
This paper analyzes the circulating current which is produced by HT-7Usuperconducting toroidal power supply-two sets of two-reverse-star converter with aninterphase-reactor in parallel running on the basis of the outp...This paper analyzes the circulating current which is produced by HT-7Usuperconducting toroidal power supply-two sets of two-reverse-star converter with aninterphase-reactor in parallel running on the basis of the output voltage mathematical equation ofthree-phase semi-wave converter circuit. A new idea of omitting interphase-reactor between twoconverters is proposed, and the parameter design of interphase-reactor of HT-7 toroidal power supplyis presented. Simulated results demonstrate the validity of this new project.展开更多
This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400...This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.展开更多
In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the oce...In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.展开更多
In urban power networks,a common practice is to bond numerous high-voltage cable circuits to a single grounding grid located in underground tunnels,primarily for reasons of installation convenience.In these situations...In urban power networks,a common practice is to bond numerous high-voltage cable circuits to a single grounding grid located in underground tunnels,primarily for reasons of installation convenience.In these situations,excessively high levels of sheath currents were often detected during routine inspections,but no electrical faults were found to be responsible.Previous publications ignored the currents flowing through the shared grounding points into the closed sheath loops of different circuits.In this paper,a mathematical model is established for the current circulating among sheath loops of different circuits,and the factors influencing the circulating current were analysed.The abnormal excessive sheath current is demonstrated to be an increase in the circulating current due to the combined effect of electromagnetic coupling and the shared grounding grid.The circulating current depends on the induced voltages which,in turn,depends on the cable layouts and load currents.The effects of these factors are evaluated in various scenarios.The increase of the circulating current is verified in a field case where four electrically healthy cable circuits sharing the same grounding points were found to have abnormal excessive sheath currents.展开更多
A modular-parallel IPT system with multi-inverters is proposed to enhance power capacity and expansibility for primary power equipment.In order to balance the actual output power of each inverter,a control strategy is...A modular-parallel IPT system with multi-inverters is proposed to enhance power capacity and expansibility for primary power equipment.In order to balance the actual output power of each inverter,a control strategy is designed to minimize circulating-current and equalize output current.In the process of circulating current suppression,current could be decoupled into the following two parts through a d-q synchronous rotating frame:virtual active and reactive current.Then,the above two virtual current components can be adjusted by PWM and PPM.A close-loop control method based on master-slave scheme is proposed to improve the scalability for a practical IPT system,and an impedance matching and its ZCS method is proposed to avoid detuning caused by a change of the number of modules.Finally,an IPT experiment platform with 3-parallel modules is established to verify availability of the proposed control methods.As shown in the experiment,circulating current of the prototype can be reduced from 2.6 A to 0.3 A,and the difference of output power of each module is less than 1%when deviation of the input DC voltage,the delay of driving signals,and the resonant inductance is 10%,respectively.The overall efficiency of the modular IPT system is up to 92.5%at 3.3 kW.展开更多
Results of the Ocean General Circulation Model for the Earth Simulator(OFES) from January 1977 to December2006 are used to investigate mesoscale eddies near the Ryukyu Islands. The results show that:(1) Larger ed...Results of the Ocean General Circulation Model for the Earth Simulator(OFES) from January 1977 to December2006 are used to investigate mesoscale eddies near the Ryukyu Islands. The results show that:(1) Larger eddies are mainly east of Taiwan, above the Ryukyu Trench and south of the Shikoku Island. These three sea areas are all in the vicinity of the Ryukyu Current.(2) Eddies in the area of the Ryukyu Current are mainly anticyclonic, and conducive to that current. The transport of water east of the Ryukyu Islands is mainly toward the northeast.(3)The Ryukyu Current is significantly affected by the eddies. The lower the latitude, the greater these effects.However, the Kuroshio is relatively stable, and the effect of mesoscale eddies is not significant.(4) A warm eddy south of the Shikoku Island break away from the Kuroshio and move southwest, and is clearly affected by the Ryukyu Current and Kuroshio. Relationships between the mesoscale eddies, Kuroshio meanders, and Ryukyu Current are discussed.展开更多
In 2006, except the basic improvement on HL-2A tokamak control system, data acquisition and processing system, a series of research activities have been developed in computer and control division. They include the con...In 2006, except the basic improvement on HL-2A tokamak control system, data acquisition and processing system, a series of research activities have been developed in computer and control division. They include the construction of the high performance computer (HPC) system, the plasma configuration real-time reconstruction with EFIT code, the immigration of plasma simulation codes, the improvement of the poloidal field control system with circulating current, the design of the new data acquiring device with higher anti-disturbing power, the new software on soft X-ray spectrum measurement providing the multi-channel Te evolution, the upgrade to the HL-2A data storage system and experimental net. On the other hand, according to the arrangement of HL-2A modification project, a series of designs such as new plasma configuration, poloidal field coils distribution and plasma shape and position control system are on the processing.展开更多
5 Former circulation enterprises finding new market position Those large-sized auto circulation enterprises, which used to lead the circulation system, have been suffering the twist and turns from the new system orien...5 Former circulation enterprises finding new market position Those large-sized auto circulation enterprises, which used to lead the circulation system, have been suffering the twist and turns from the new system oriented by automakers. Their market shares shapely fell down and have emerged into chaos. Parts of them that are powerful enough have established new sales companies controlled by the展开更多
文摘Greece boasts an impressive closed coastline stretching across 13,676 km, making it the largest in the Mediterranean basin and one of the largest in the world. Given the significant human activities that take place in coastal areas, understanding the behavior of the sea environment becomes crucial. In this study, we delve into the generation and movement of marine currents as well as the retention time and water age within the waters of Pagasitikos Sea inlet, Greece, through numerical simulation of hydrodynamic characteristics. The main examined points of the understudy region are the area of the port of Volos, the Trikeri channel where the ingress and egress of water from the Gulf takes place and the exchange of seawater through circulation of the Pagasitikos Gulf with the North Evian Gulf. In order to evaluate the results, they were compared with real field measurements and with simulation on a laboratory dummy of the same area. The computational simulation was performed with the ELCOM 2.2 numerical modeling tool and the AEM3D latest version and the main factors simulated are the tide, the consequence that Coriolis force, boundary conditions, the topography and bottom geometry of the bay and the actual meteorological conditions of a whole year.
基金supported by the National Natural Science Foundation of China(Grant No.51977046)Wuxi University Research Start-up Fund for Introduced Talent(2022r021).
文摘The development of renewable energy power generation for carbon neutrality and energy transition has been increasing worldwide,leading to an increasing demand for high-power conversion.Compared with traditional interleaved paralleling,the integrated paralleling of three-level inverters can further reduce the output harmonics.Moreover,a well-designed switching sequence ensures that the average circulating current is zero,which provides a superior and feasible solution to satisfy the demands of high-power operations.However,a large instantaneous loop current exists between shunt converters,which leads to disadvantages such as higher switching device stress and loss.In this study,by utilizing the state-distribution redundancy provided by the integrated modulation process,a new design for switch-ing sequences is suggested for the integrated modulation of shunt three-level converters.This design aims to reduce the circulating current while better preserving the same output current harmonics than traditional parallel methods.The proposal includes an in-depth analysis and explanation of the implementation process.Finally,the proposed method is validated through simulations and prototype experi-ments.The results indicate that compared with traditional methods,the adoption of the improved switching sequence presented in this study leads to an average reduction of 3.2%in the total harmonic distortion of the inverter’s output and an average decrease of 32%in the amplitude of the circulating current.Both the output harmonics and circulating currents are significantly suppressed across various modulation indices.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
基金Foundation items:National Natural Science Foundation of China(No.62303107)Fundamental Research Funds for the Central Universities,China(Nos.2232022G-09 and 2232021D-38)Shanghai Sailing Program,China(No.21YF1400100)。
文摘Circulating currents in a microgrid increase the power loss of the microgrid, reduce the operational efficiency, as well as affect the power quality of the microgrid. The existing literature is seldom concerned with methods to suppress the loop currents using fuzzy logic control. In this paper, a method based on fuzzy control of droop coefficients is proposed to suppress the circulating currents inside the microgrid.The method combines fuzzy control with droop control and can achieve the effect of suppressing the circulating currents by adaptively adjusting the droop coefficients to make the power distribution between each subgrid more balanced. To verify the proposed method, simulation is carried out in Matlab/Simulink environment, and the simulation results show that the proposed method is significantly better than the traditional proportional-integral control method. The circulating currents reduce from about 10 A to several nanoamperes, the bus voltage and frequency drops are significantly improved, and the total harmonic distortion rate of the output voltage reduces from 4.66% to 1.06%. In addition, the method used in this paper can be extended to be applied in multiple inverters connected in parallel, and the simulation results show that the method has a good effect on the suppression of circulating currents among multiple inverters.
基金Supported by the National Natural Science Foundation of China(Nos.U23A2032,42006193)supported by the Hainan Provincial Excellent Talent Team Project(Space Observation of Deep-sea)。
文摘Internal solitary waves(ISWs)have considerable energy to drive the mixing of water masses in the Sulu Sea.The propagation speed is one of the critical parameters in quantifying the energy budget of the ISWs.We collected 1354 groups of ISWs’speeds from tandem satellite remote sensing images with temporal intervals shorter than 25 min and analyzed their spatial and multi-scale temporal variations in the Sulu Sea.We found that water depth plays an important role in modulating the spatial variation of wave speeds,which increase exponentially with water depth with a power of 0.26.Tidal currents,ocean stratification,background circulation,and climate affect the temporal variations of wave speeds from days to months or years.The fortnightly spring/neap tidal currents cause daily variations of wave speeds up to 40%by modulating the ISW amplitudes.In addition to the well-accepted results that monthly variations of wave speeds are related to density stratification,we found that enhanced stratification increases wave speeds,and the background circulation leads to a maximum decrease of 0.27 m/s in the linear counterparts of wave speed.Moreover,the averaged wave speed collected in October is lower than the corresponding linear one possibly due to some unknown dynamical processes or underestimation of background current.As for the interannual variations,we show that wave speed increases in La Niña years and decreases in El Niño years as a result of the climatic modulation on the depth of the maximum value of buoyancy frequency.
文摘This research investigated the outputting circulation current inhibition characteristic which are controlled by the instantaneous feedback voltage in inverter parallel driving of the mine hoist. We established a transfer function of the parallel inverters controlled by the close-loop adjustment of instantaneous voltage feedback. The influence of the parameters of the close-loop feedback circuit to the inhibition effects to the outputting circulation current is observed. After analyzing the circulating current inhibition characteristics, the proportion integration (PI) controller is introduced into the close-loop adjustment by instantaneous voltage feedback. The characteristics equation is gained to determine the PI parameters by drawing the Bode plots. The inhibition effects of the proposed controller are examined by the established simulation model of parallel inverter system. The harmonic distortion rate at the outputting voltage frequency value of 4, 10, 20, 41 and 50 Hz, are all lower than 2.32 % by the instantaneous outputting voltage feedback.
基金This work was partially supported by the National Natural Science Foundation of China(11847104)General Program of National Natural Science Foundation of China(51977124)+2 种基金Shandong Natural Science Foundation(ZR2019QEE001)Natural Science Foundation of Jiangsu Province(BK20190204)National Distinguished Expert(Youth Talent)Program of China(31390089963058)。
文摘The modular multilevel converter(MMC)has become a promising topology for widespread power converter applications.However,an evident circulating current flowing between the phases will increase system losses and complicate the heatsink design.This paper proposes a novel hybrid model predictive control method for MMCs.This method utilizes an indirect structure MPC and a sorting algorithm to implement current tracking and capacitor voltages balancing,considerably resulting in reduced calculation burden.In addition,different from the conventional MPC solutions,we add a simple proportional-integral(PI)controller to suppress circulating current through modifying the submodule(SM)inserted number,which is parallel to the MPC loop.This hybrid control solution combines both advantages of MPC and linear control,evidently resulting in improved performance of circulating current.Finally,the MATLAB/Simulink results of an 11-level MMC system verify the effectiveness of the proposed solution.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
文摘Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010302the National Natural Science Foundation of China under contract No.41376009the Joint Program of Shandong Province and National Natural Science Foundation of China under contract No.U1406401
文摘The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900-2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon.
基金The National Basic Research Program of China under contract No.2014CB441501the National Natural Science Foundation of China under contract Nos 41576001,41176021,41176020,91128204,41276031,41406021,41276095 and 41321004+1 种基金the fund from the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography under contract No.SOEDZZ1501the National Program on Global Change and Air-Sea Interaction under contract No.GASI-03-01-01-02
文摘The influence of the Kuroshio on neighboring Chinese seas and the Ryukyu Current is a very important subject of interest in physical oceanography. To deeply explain the research progress made by Chinese scientists from July2010 to May 2015, the following three aspects are reviewed in this paper. The first concerns the Kuroshio intrusion into the South China Sea(SCS) and its circulation around the Luzon Strait. There are two very important points to be explained: the seasonal and inter-annual variation of the Kuroshio intrusion and the mechanisms of the Kuroshio intrusion and the influence of the Kuroshio on currents in the Luzon Strait and circulation in the northern SCS. The second concerns the variability of the Kuroshio and its interaction with the East China Sea(ECS). There are following four interesting topics to be explained: an overview of studies on the Kuroshio in the ECS; the Kuroshio intrusion into the ECS, water exchange, and dynamic impacts; the downstream increase of nutrient transport by the Kuroshio; and the application of satellite remote sensing on terrestrial material transport by the Kuroshio intrusion into the ECS. Third, the interaction between the Ryukyu Current and Kuroshio in the ECS are also discussed. Finally, the main results are summarized and areas of further study are simply discussed.
文摘In medium voltage high power applications,multi-level current source converters(CSCs)are good candidate to increase system power region,reliability,and the quality of output waveforms.Compared with widely researched voltage source multi-level converters(MLCs),the current source MLCs have the advantages of inherent short-circuit protection,high power capability and high quality of output current waveforms.The main features of MLCs include reduced harmonics,lower switching frequency and reduced current stress on each device which is a particularly important for high power application with low voltage and high current requirements.This paper conducts a general review of the current research about MLCs in higher power medium voltage application.The different types of parallel structure based MLCs and the modulation methodologies will be introduced and compared.Specifically,the circuit analysis of the common-mode(CM)loop for parallel structures will be conducted,the common-mode voltage(CMV)and circulating current suppression methods developed on the base of multilevel modulations will be addressed.
基金The project supported by the National Meg-Science Engineering Project of the Chinese Government
文摘This paper analyzes the circulating current which is produced by HT-7Usuperconducting toroidal power supply-two sets of two-reverse-star converter with aninterphase-reactor in parallel running on the basis of the output voltage mathematical equation ofthree-phase semi-wave converter circuit. A new idea of omitting interphase-reactor between twoconverters is proposed, and the parameter design of interphase-reactor of HT-7 toroidal power supplyis presented. Simulated results demonstrate the validity of this new project.
基金supported by the Natural Science Foundation for Young Scientists of Shanxi Province,China(No.52007154).
文摘This paper presents a solution to the circulating current fault of aircraft power supply.The DC-link type Variable Frequency to Constant Frequency(VFCF)converter system is the preferred scheme to feed the constant 400 Hz load in an aircraft with a variable frequency power supply.Due to the requirement of aircraft standards,both grounds of the rectification and inversion stage are tied to the metal frame of the aircraft.With such a tied ground,the DC bus voltage rises greatly,and a large circulating current appears in the casing as the ground,which leads to equipment failure and potential safety hazards.According to the existing methods of circulating current fault suppression,this paper analyzes the causes of the above faults and the harmonic components of circulating current and points out the limitations of the existing methods.Therefore,a Common-Mode(CM)choke-based method is proposed to provide a high impedance in the path of the CM circulating current.By doing so,the circulating current can be suppressed without the additional burden of the hardware and control algorithm,which is quite friendly for quality control of mass-production aircraft.Moreover,a simplified mathematic model of the VFCF converter system is derived to calculate the minimum inductance value reference of the CM choke,which saves the weight of passive devices to the greatest extent.Finally,simulation and experimental results are studied to verify the effectiveness of the proposed method.
基金The National Natural Science Foundation of China under contract No.40576020
文摘In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.
基金Project of State Grid Corporation of China,Grant/Award Number:5700-202118195A-0-0-00。
文摘In urban power networks,a common practice is to bond numerous high-voltage cable circuits to a single grounding grid located in underground tunnels,primarily for reasons of installation convenience.In these situations,excessively high levels of sheath currents were often detected during routine inspections,but no electrical faults were found to be responsible.Previous publications ignored the currents flowing through the shared grounding points into the closed sheath loops of different circuits.In this paper,a mathematical model is established for the current circulating among sheath loops of different circuits,and the factors influencing the circulating current were analysed.The abnormal excessive sheath current is demonstrated to be an increase in the circulating current due to the combined effect of electromagnetic coupling and the shared grounding grid.The circulating current depends on the induced voltages which,in turn,depends on the cable layouts and load currents.The effects of these factors are evaluated in various scenarios.The increase of the circulating current is verified in a field case where four electrically healthy cable circuits sharing the same grounding points were found to have abnormal excessive sheath currents.
文摘A modular-parallel IPT system with multi-inverters is proposed to enhance power capacity and expansibility for primary power equipment.In order to balance the actual output power of each inverter,a control strategy is designed to minimize circulating-current and equalize output current.In the process of circulating current suppression,current could be decoupled into the following two parts through a d-q synchronous rotating frame:virtual active and reactive current.Then,the above two virtual current components can be adjusted by PWM and PPM.A close-loop control method based on master-slave scheme is proposed to improve the scalability for a practical IPT system,and an impedance matching and its ZCS method is proposed to avoid detuning caused by a change of the number of modules.Finally,an IPT experiment platform with 3-parallel modules is established to verify availability of the proposed control methods.As shown in the experiment,circulating current of the prototype can be reduced from 2.6 A to 0.3 A,and the difference of output power of each module is less than 1%when deviation of the input DC voltage,the delay of driving signals,and the resonant inductance is 10%,respectively.The overall efficiency of the modular IPT system is up to 92.5%at 3.3 kW.
基金The National Natural Science Foundation of China under contract No.41076003the Youth Science and Technology Foundation of East China Sea Branch,SOA under contract Nos 201314 and 201203the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics under Contract No.SOED1402
文摘Results of the Ocean General Circulation Model for the Earth Simulator(OFES) from January 1977 to December2006 are used to investigate mesoscale eddies near the Ryukyu Islands. The results show that:(1) Larger eddies are mainly east of Taiwan, above the Ryukyu Trench and south of the Shikoku Island. These three sea areas are all in the vicinity of the Ryukyu Current.(2) Eddies in the area of the Ryukyu Current are mainly anticyclonic, and conducive to that current. The transport of water east of the Ryukyu Islands is mainly toward the northeast.(3)The Ryukyu Current is significantly affected by the eddies. The lower the latitude, the greater these effects.However, the Kuroshio is relatively stable, and the effect of mesoscale eddies is not significant.(4) A warm eddy south of the Shikoku Island break away from the Kuroshio and move southwest, and is clearly affected by the Ryukyu Current and Kuroshio. Relationships between the mesoscale eddies, Kuroshio meanders, and Ryukyu Current are discussed.
文摘In 2006, except the basic improvement on HL-2A tokamak control system, data acquisition and processing system, a series of research activities have been developed in computer and control division. They include the construction of the high performance computer (HPC) system, the plasma configuration real-time reconstruction with EFIT code, the immigration of plasma simulation codes, the improvement of the poloidal field control system with circulating current, the design of the new data acquiring device with higher anti-disturbing power, the new software on soft X-ray spectrum measurement providing the multi-channel Te evolution, the upgrade to the HL-2A data storage system and experimental net. On the other hand, according to the arrangement of HL-2A modification project, a series of designs such as new plasma configuration, poloidal field coils distribution and plasma shape and position control system are on the processing.
文摘5 Former circulation enterprises finding new market position Those large-sized auto circulation enterprises, which used to lead the circulation system, have been suffering the twist and turns from the new system oriented by automakers. Their market shares shapely fell down and have emerged into chaos. Parts of them that are powerful enough have established new sales companies controlled by the