The rapid corrosion rate and limited biological functionality still pose challenges for magnesium(Mg)-based implants in the treatment of complicated bone-related diseases in clinic.Herein,a multifunctional biodegradab...The rapid corrosion rate and limited biological functionality still pose challenges for magnesium(Mg)-based implants in the treatment of complicated bone-related diseases in clinic.Herein,a multifunctional biodegradable curcumin(herbal medicine)-ferrum(Cur-Fe)nanoflower was self-assembled on plasma electrolytic oxidation(PEO)-treated Mg alloy via a facile immersion process to realize differential biological function for anti-bacteria/tumor and bone regeneration.The results indicated that Cur-Fe nanoflower coating can promote protein adsorption,cell adhesion and proliferation,exhibiting excellent biocompatibility.The Cur-Fe nanoflower coating exhibits unique degradation characteristics,as curcumin gradually decomposes into ferulic acid,aromatic aldehyde and other antibacterial substances,and the coating spontaneously converts into FeOOH nanosheets,ensuring the corrosion resistance of Mg-based implants.Moreover,Cur-Fe coating exhibits remarkable narrow gap semiconductor characteristics,which can generate reactive oxygen species(ROS)and demonstrated excellent antibacterial effect under simulated sunlight(SSL)irradiation.Meanwhile,under NIR irradiation,Cur-Fe coating showed excellent chemotherapy/photodynamic/photothermal synergetic antitumor properties in vitro and in vivo due to the introduction of curcumin,and photocatalysis and photothermal conversion properties of coating.Furthermore,Cur-Fe nanoflower coating demonstrated great osteogenesis activity in vitro and in vivo due to unique micro/nano structure,surface chemical bond,and the release of Mg and Fe ions.展开更多
基金supported by the National Key R&D Program of China(2021YFC2400500)Shanghai Committee of Science and Technology,China(20S31901200)+2 种基金the Fundamental Research Funds for the Central Universities(2022ZYGXZR042)Postdoctoral Science Foundation of China(2022M723288)GDPH Supporting Fund for Talent Program(KY0120220137).
文摘The rapid corrosion rate and limited biological functionality still pose challenges for magnesium(Mg)-based implants in the treatment of complicated bone-related diseases in clinic.Herein,a multifunctional biodegradable curcumin(herbal medicine)-ferrum(Cur-Fe)nanoflower was self-assembled on plasma electrolytic oxidation(PEO)-treated Mg alloy via a facile immersion process to realize differential biological function for anti-bacteria/tumor and bone regeneration.The results indicated that Cur-Fe nanoflower coating can promote protein adsorption,cell adhesion and proliferation,exhibiting excellent biocompatibility.The Cur-Fe nanoflower coating exhibits unique degradation characteristics,as curcumin gradually decomposes into ferulic acid,aromatic aldehyde and other antibacterial substances,and the coating spontaneously converts into FeOOH nanosheets,ensuring the corrosion resistance of Mg-based implants.Moreover,Cur-Fe coating exhibits remarkable narrow gap semiconductor characteristics,which can generate reactive oxygen species(ROS)and demonstrated excellent antibacterial effect under simulated sunlight(SSL)irradiation.Meanwhile,under NIR irradiation,Cur-Fe coating showed excellent chemotherapy/photodynamic/photothermal synergetic antitumor properties in vitro and in vivo due to the introduction of curcumin,and photocatalysis and photothermal conversion properties of coating.Furthermore,Cur-Fe nanoflower coating demonstrated great osteogenesis activity in vitro and in vivo due to unique micro/nano structure,surface chemical bond,and the release of Mg and Fe ions.