Anaerobic, aerobic, and facultative bacteria are all present in corrosive environments. However, as previous studies to address corrosion in the marine environment have largely focused on anaerobic bacteria, limited a...Anaerobic, aerobic, and facultative bacteria are all present in corrosive environments. However, as previous studies to address corrosion in the marine environment have largely focused on anaerobic bacteria, limited attention has been paid to the composition and function of aerobic and facultative bacteria in this process. For analysis in this study, ten samples were collected from rust layers on steel plates that had been immersed in seawater for diff erent periods (i.e., six months and eight years) at Sanya and Xiamen, China. The cultivable aerobic bacterial community structure as well as the number of sulfate-reducing bacteria (SRB) were analyzed in both cases, while the proportion of facultative SRB among the isolated aerobic bacteria in each sample was also evaluated using a novel approach. Bacterial abundance results show that the proportions are related to sea location and immersion time;abundances of culturable aerobic bacteria (CAB) and SRB from Sanya were greater in most corrosion samples than those from Xiamen, and abundances of both bacterial groups were greater in samples immersed for six months than for eight years. A total of 213 isolates were obtained from all samples in terms of CAB community composition, and a phylogenetic analysis revealed that the taxa comprised four phyla and 31 genera. Bacterial species composition is related to marine location;the results show that Firmicutes and Proteobacteria were the dominant phyla, accounting for 98.13% of the total, while Bacillus and Vibrio were the dominant genera, accounting for 53.06% of the total. An additional sixfacultative SRB strains were also screened from the isolates obtained and were found to encompass the genus Vibrio (four strains), Staphylococcus (one strain), and Photobacterium (one strain). It is noteworthy that mentions of Photobacterium species have so far been absent from the literature, both in terms of its membership of the SRB group and its relationship to corrosion.展开更多
Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups t...Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to cL-Proteobacteria, y-Proteobacteria, Cytophaga/Flavobacterium/Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.展开更多
Phylogenetic analysis based on 16S rDNA of 8 strains of cultivable bacteria isolated from Arctic sea-ice was studied.The results showed that strain BJ1 belonged to genus Planococcus,which was a genus of low mole perce...Phylogenetic analysis based on 16S rDNA of 8 strains of cultivable bacteria isolated from Arctic sea-ice was studied.The results showed that strain BJ1 belonged to genus Planococcus,which was a genus of low mole percent G+C gram-positive bacteria;strain BJ6 belonged to genus Burkholderia of β-proteobacteria and the rest 6 strain all belonged to γ-proteobacteria,of which strain BJ8 was a species of Pseudoalteromonas,strain BJ2-BJ5 and BJ7 were members of genus Psychrobacter.Phylogenetic analysis also indicated that bacteria of genus Psychrobacter of the isolates formed a relatively independent phylogenetic cluster in comparison with other bacteria belonged to genus Psychrobacter.展开更多
Bacterial diversity of 14 sites of the East China Sea was investigated by culture-dependent methods. The impact of human activities on marine bacteria was primarily studied and characteristics of bacteria communities ...Bacterial diversity of 14 sites of the East China Sea was investigated by culture-dependent methods. The impact of human activities on marine bacteria was primarily studied and characteristics of bacteria communities in different areas were analyzed. A total of 396 strains were obtained. These strains belong to 4 phyla, 9 classes and 146 species according to 16S rDNA sequences alignment. For 32 strains, the 16S rDNA sequences similarities between isolated strains and their most closely related species were lower than 98%. The result indicated that there are abundant microbial diversity and a large number of unknown microbial resources in the East China Sea. Isolated strains were dominated byy-proteobacteria (64%), ct-proteobacteria (18%) and Firmicutes (15%). Actinobacteria and Bacteroidetes were less than 3%. Microbial community composition, diversity and abundance among areas with varies distances from land were different. The far the regions from the land, the lower the Shannon index (H') and the Margalef index (DMg) values were.展开更多
For decades,Xu has been committed to fulfilling the duty and mission of a scientist and educator—diving into the laws of nature,caring deeply for the nation,and earnestly cultivating younger generations.
Blending tradition with modern elements,Songyang’s tea industry attracts young entrepreneurs to revive culture and drive economic growth.SONGYANG has a long and rich history of tea cultivation and production.The coun...Blending tradition with modern elements,Songyang’s tea industry attracts young entrepreneurs to revive culture and drive economic growth.SONGYANG has a long and rich history of tea cultivation and production.The county became famous for its tea as early as the Three Kingdoms period(220-280).Today,this land is home to over 10,000 hectares of ecofriendly tea plantations.One in every three Songyang residents is involved in the tea industry,whose full industrial chain value now exceeds RMB 13.5 billion.展开更多
Established in 2019,the Shandong Port Group(SPG)comprises four port groups(Qingdao Port,Rizhao Port,Yantai Port,and Bohaiwan Port)and 12 business segments.SPG connects 3,345 kilometers of coastline within Shandong Pro...Established in 2019,the Shandong Port Group(SPG)comprises four port groups(Qingdao Port,Rizhao Port,Yantai Port,and Bohaiwan Port)and 12 business segments.SPG connects 3,345 kilometers of coastline within Shandong Province.Its cargo throughput has consistently ranked first globally for many years,and its container volume growth ranks second globally,forming a port cluster covering the entire industrial chain.展开更多
Enhancing innovation-driven develop ment to accelerate the cultivation of new growth drivers is one of the major strate-gic tasks for China's economic work in 2026.In the context of the rapid global acceleration o...Enhancing innovation-driven develop ment to accelerate the cultivation of new growth drivers is one of the major strate-gic tasks for China's economic work in 2026.In the context of the rapid global acceleration of technological develop ment and strong pushes from the West toward de-globalization and protection-ism,China’s efforts will require the continued deep integration of technology with its institutions,personnel,culture and market.展开更多
In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in...In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.展开更多
Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu prov...Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu province,a national leader in both economic and agricultural development,as a case area to construct a multidimensional framework for assessing the recessive morphological characteristics of multifunctional cultivated land use.We examine temporal dynamics,spatial heterogeneity,and propose an integrated zoning strategy based on empirical analysis.The results reveal that:(1)The recessive morphology index shows a consistent upward trend,with structural breaks in 2007 and 2013,and a spatial shift from“higher in the east and lower in the west”to“higher in the south and lower in the north.”(2)Coordination among sub-dimensions of the index has steadily improved.(3)The index is expected to continue rising in the next decade,though at a slower pace.(4)To promote coordinated multidimensional land-use development,we recommend a policy framework that reinforces existing strengths,addresses weaknesses,and adapts zoning schemes to current spatial conditions.This research offers new insights into multifunctional cultivated land systems and underscores their role in enhancing human well-being,securing food supply,and supporting sustainable urban-rural integration.展开更多
The third International Standardization Youth Star Competition is held in Qingdao.We are very pleased to see that 236 teams from renowned domestic universities are actively participating in the competition.ISO has als...The third International Standardization Youth Star Competition is held in Qingdao.We are very pleased to see that 236 teams from renowned domestic universities are actively participating in the competition.ISO has also sent a representative to Qingdao,demonstrating its high level of attention and support for the competition.展开更多
Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to miti...Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.展开更多
Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have de...Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have developed a vertical hydroponic breeding system integrated with light-emitting diodes(LEDs)light-ing in a closed plant factory(PF),which significantly accelerates rice growth and generation advance-ment.The results show that indica rice can be harvested as early as after 63 days of cultivation,a 50%reduction compared with field cultivation,enabling the annual harvesting of 5-6 generations within the PF.A hyperspectral imaging(HSI)system and attenuated total reflectance infrared(ATR-IR)spec-troscopy were further employed to characterize the chemical composition of the PF-and field-cultivated rice.Metabolomics analysis with ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)and gas chromatography-mass spectrometry(GC-MS)revealed that,com-pared with the field-cultivated rice,the PF-cultivated rice exhibited an up-regulation of total phenolic acids along with 68 non-volatile and 19 volatile metabolites,such as isovitexin,succinic acid,and methylillicinone F.Overall,this study reveals the unique metabolic profile of PF-cultivated rice and high-lights the potential of PFs to accelerate the breeding of crops such as rice,offering an innovative agricul-tural strategy to support food security in the face of global population growth and climate change.展开更多
Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while bala...Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods:plastic film mulching dry cultivation(PFMC),bare dry cultivation(BC),and continuous flooding cultivation(CF)as control.There was no significant difference in upland rice yield between PFMC and BC,nor in paddy rice yield between PFMC and CF.Compared with CF,the two varieties'yields decreased significantly with BC.Dry cultivation,especially PFMC,could decrease the active filling period,chalky rice rate,chalkiness,amylose content,gel consistency,breakdown viscosity,the ratio of glutelin to prolamin,and leaf senescence while increasing water use efficiency,protein components content,setback viscosity,grain starch branching enzyme(Q-enzyme)activity,and average filling rate.Compared with paddy rice,upland rice had a lower yield,shorter active filling period,lower chalkiness grain rate and gel consistency,higher amylose content,breakdown viscosity,protein components content,and average filling rate.Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.Reasonable dry cultivation methods could balance yield and quality,especially by improving rice's nutritional and appearance quality.展开更多
This paper discusses the development characteristics of urban horticulture under the background of smart agriculture,as well as the application of artificial intelligence technology in it.It analyzes the importance of...This paper discusses the development characteristics of urban horticulture under the background of smart agriculture,as well as the application of artificial intelligence technology in it.It analyzes the importance of highly skilled talents in urban agriculture in the era of smart agriculture and their cultivation pathways and practices.It proposes measures such as building multi-level practical teaching platforms,implementing the“Enjoy Horticulture”series of high-quality activities,and establishing the“1234”applied talent training model to cultivate high-quality talents that meet the development needs of modern urban horticulture industry.Taking Beijing University of Agriculture and other universities as examples,the paper analyzes the practical cases and effects of the urban horticulture discipline’s industry-education-research collaborative talent training model,which has reference significance for further improving and perfecting the urban horticulture industry-education-research collaborative talent training plan.展开更多
To promote the growth of cutting seeding of poplar(Populus L.),nitrogen(N)fertilizer and surface weed managements were required.We here conducted a pot experiment to examine the effects of natural vegetation,barnyardg...To promote the growth of cutting seeding of poplar(Populus L.),nitrogen(N)fertilizer and surface weed managements were required.We here conducted a pot experiment to examine the effects of natural vegetation,barnyardgrass(Echinochloa Beauv.),and sesbania(Sesbania cannabina pers.)on the growth of poplar cutting seedlings,soil properties,and ammonia(NH3)volatilization under three N inputs(0,0.5,and 1.5 g/pot,i.e.,N0,N0.5,and N1,respectively).Results showed that N application promoted the growth of poplar cutting seedlings,including plant height,ground diameter,and biomass,compared with N0 treatment.Moreover,under N0,sesbania significantly increased the plant height by 87.1%,barnyardgrass and sesbania significantly increased the ground diameter(16.2%and 51.5%),and biomass(67.4%and 74.7%)of poplar cutting seedlings,compared with natural vegetation management.Compared to natural vegetation,soil organic matter(SOM)of barnyardgrass and sesbania covered soil significantly increased by 12.4%and 18.7%at N1,respectively.In addition,soil total N(TN)content was significantly increased by 15.8%in barnyardgrass planted at N0.The soil ammonium N(NH_(4)^(+)-N)content decreased with the planting of barnyardgrass and sesbania across all levels of N application.At N0.5,the nitrate N(NO_(3)^(−)-N)content of soil planted with barnyardgrass significantly increased compared to both the natural vegetation and the sesbania groups.Compared to the natural vegetation,the soil available phosphorus(AP)content of the barnyardgrass group significantly increasing by 78.8%at N0.5,soil available potassium(AK)content was significantly reduced by 12.5%in the sesbania group at N0 and increased by 24.1%in the barnyardgrass group at N1.We found that cumulative NH3 emissions were significantly higher in all treatment groups at the N1 level than that at the N0.5 level,while the differences among the three plants treated were not significant.The results suggest that both barnyardgrass and sesbania promote seedling growth in the short term,while also increase certain properties.Therefore,effective herb management during the seedling stage is recommended in nurseries to support seedling growth and retain soil fertility.展开更多
Rice yield is heavily reliant on the number of spikelets per panicle,a factor determined by the processes of spikelet differentiation and degeneration.In rice cultivars with large panicles,spikelet degeneration negate...Rice yield is heavily reliant on the number of spikelets per panicle,a factor determined by the processes of spikelet differentiation and degeneration.In rice cultivars with large panicles,spikelet degeneration negates the advantages of large panicle and constrains yield potential.Environmental stress-induced metabolic disorders in plants aggravate spikelet degeneration,with the sensitive period for this process commencing approximately 15‒20 d before panicle heading.Notable positional variations occur within the panicle,with significantly higher spikelet degeneration rates at the basal than at the upper positions.An imbalance of carbon and nitrogen metabolism represents the primary physiological basis for aggravated spikelet degeneration under abiotic stress.Impaired carbon and nitrogen metabolism leads to disordered energy metabolism and disrupted respiratory electron transport,which accelerates the apoptosis of young spikelets through excessive reactive oxygen species accumulation.Sucrose serves as the main carbohydrate source for spikelet development,demonstrating an apical dominance pattern that favors spikelet formation.However,under abiotic stress,the inhibition of sucrose decomposition,rather than sucrose transport impairment,predominantly contributes to aggravated spikelet degeneration at the basal panicle positions.Brassinolide and auxin have a significant relationship with spikelet formation,potentially mediating apical dominance.Specifically,brassinolide enhances sucrose accumulation and utilization,thereby alleviating spikelet degeneration.At present,the mechanisms underlying rice spikelet degeneration have not been fully revealed,and the joint effects of hormones,carbohydrates,and carbon and nitrogen metabolism on this process require further investigation.To reduce the spikelet degeneration,the strategic application of water and fertilizer to establish a stable rice population can enhance the rice plants’resilience to abiotic stress.An effective approach to reducing spikelet degeneration is to increase the dry matter occupancy of each spikelet during the panicle initiation period.展开更多
Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat th...Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat through optimization of the cell source and organization process.Results We engineered fibroblasts into myogenic cells via non-viral introduction of the MYOD1 gene,avoiding viral methods for safety.After confirming the stable derivation of myogenic cells,we combined knockout(KO)of MSTN,a negative regulator of myogenesis,with MYOD1-mediated myogenesis to improve cultivated meat production.Primary cells from MSTN KO cattle exhibited enhanced myogenic potential.Additionally,when tested in immortalized fibroblasts,myostatin treatment reduced MYOD1-induced myogenesis in two-dimensional cultures,while MSTN knockout increased it.To achieve muscle-like cell alignment,we employed digital light processing(DLP)-based three-dimensional(3D)bioprinting to organize cells into 3D groove-shaped hydrogels.These bioactive hydrogels supported stable cell proliferation and significantly improved muscle cell alignment.Upon differentiation into myotubes,the cells demonstrated an ordered alignment,particularly the MSTN KO cells,which showed highly efficient differentiation.Conclusions The integration of genetic modification and advanced DLP 3D bioprinting with groove-patterned hydrogels provides an effective strategy for producing high-quality,muscle-aligned cultivated meat.展开更多
In the context of"high-quality development"construction,the establishment and operational status of the national-level scientific research platforms at provincial universities—specifically,the large-scale i...In the context of"high-quality development"construction,the establishment and operational status of the national-level scientific research platforms at provincial universities—specifically,the large-scale instrument sharing platforms—are critically linked to the production of scientific research outcomes and the development of interdisciplinary talents.This study focuses on the public platform of the State Key Laboratory of Tea Plant Germplasm Innovation and Resource Utilization,aiming to innovate the management system,establish a technical platform,effectively integrate resources,and actively engage graduate students in the platform management.While ensuring the efficient operation of the large-scale instrument platform at state key laboratories,it offers a novel approach to cultivating graduate students into versatile talents.展开更多
The cultivation of innovative talents has become the primary objective of talent development in colleges and universities and is also essential for the personal development of master's degree students.Ethnic medic...The cultivation of innovative talents has become the primary objective of talent development in colleges and universities and is also essential for the personal development of master's degree students.Ethnic medicine,a key discipline at Guangxi University of Chinese Medicine,aims to cultivate high-level master's degree talents who possess comprehensive qualities,strong innovative capabilities,and distinctive characteristics of Zhuang medicine.This program is designed to better serve the local economic development and social needs of Guangxi,thereby promoting the substantive advancement of higher education within traditional medical institutions.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2014CB643304)the National Natural Science Foundation of China(No.41576080)the Key Research and Development Program of Shandong Province(No.2018GHY115003)
文摘Anaerobic, aerobic, and facultative bacteria are all present in corrosive environments. However, as previous studies to address corrosion in the marine environment have largely focused on anaerobic bacteria, limited attention has been paid to the composition and function of aerobic and facultative bacteria in this process. For analysis in this study, ten samples were collected from rust layers on steel plates that had been immersed in seawater for diff erent periods (i.e., six months and eight years) at Sanya and Xiamen, China. The cultivable aerobic bacterial community structure as well as the number of sulfate-reducing bacteria (SRB) were analyzed in both cases, while the proportion of facultative SRB among the isolated aerobic bacteria in each sample was also evaluated using a novel approach. Bacterial abundance results show that the proportions are related to sea location and immersion time;abundances of culturable aerobic bacteria (CAB) and SRB from Sanya were greater in most corrosion samples than those from Xiamen, and abundances of both bacterial groups were greater in samples immersed for six months than for eight years. A total of 213 isolates were obtained from all samples in terms of CAB community composition, and a phylogenetic analysis revealed that the taxa comprised four phyla and 31 genera. Bacterial species composition is related to marine location;the results show that Firmicutes and Proteobacteria were the dominant phyla, accounting for 98.13% of the total, while Bacillus and Vibrio were the dominant genera, accounting for 53.06% of the total. An additional sixfacultative SRB strains were also screened from the isolates obtained and were found to encompass the genus Vibrio (four strains), Staphylococcus (one strain), and Photobacterium (one strain). It is noteworthy that mentions of Photobacterium species have so far been absent from the literature, both in terms of its membership of the SRB group and its relationship to corrosion.
基金Supported by the Natural Science Foundation of Fujian Province,China(No.2011J01245)the Fundamental Research Funds for the Central Universities(No.2010121034)
文摘Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to cL-Proteobacteria, y-Proteobacteria, Cytophaga/Flavobacterium/Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.
文摘Phylogenetic analysis based on 16S rDNA of 8 strains of cultivable bacteria isolated from Arctic sea-ice was studied.The results showed that strain BJ1 belonged to genus Planococcus,which was a genus of low mole percent G+C gram-positive bacteria;strain BJ6 belonged to genus Burkholderia of β-proteobacteria and the rest 6 strain all belonged to γ-proteobacteria,of which strain BJ8 was a species of Pseudoalteromonas,strain BJ2-BJ5 and BJ7 were members of genus Psychrobacter.Phylogenetic analysis also indicated that bacteria of genus Psychrobacter of the isolates formed a relatively independent phylogenetic cluster in comparison with other bacteria belonged to genus Psychrobacter.
文摘Bacterial diversity of 14 sites of the East China Sea was investigated by culture-dependent methods. The impact of human activities on marine bacteria was primarily studied and characteristics of bacteria communities in different areas were analyzed. A total of 396 strains were obtained. These strains belong to 4 phyla, 9 classes and 146 species according to 16S rDNA sequences alignment. For 32 strains, the 16S rDNA sequences similarities between isolated strains and their most closely related species were lower than 98%. The result indicated that there are abundant microbial diversity and a large number of unknown microbial resources in the East China Sea. Isolated strains were dominated byy-proteobacteria (64%), ct-proteobacteria (18%) and Firmicutes (15%). Actinobacteria and Bacteroidetes were less than 3%. Microbial community composition, diversity and abundance among areas with varies distances from land were different. The far the regions from the land, the lower the Shannon index (H') and the Margalef index (DMg) values were.
文摘For decades,Xu has been committed to fulfilling the duty and mission of a scientist and educator—diving into the laws of nature,caring deeply for the nation,and earnestly cultivating younger generations.
文摘Blending tradition with modern elements,Songyang’s tea industry attracts young entrepreneurs to revive culture and drive economic growth.SONGYANG has a long and rich history of tea cultivation and production.The county became famous for its tea as early as the Three Kingdoms period(220-280).Today,this land is home to over 10,000 hectares of ecofriendly tea plantations.One in every three Songyang residents is involved in the tea industry,whose full industrial chain value now exceeds RMB 13.5 billion.
文摘Established in 2019,the Shandong Port Group(SPG)comprises four port groups(Qingdao Port,Rizhao Port,Yantai Port,and Bohaiwan Port)and 12 business segments.SPG connects 3,345 kilometers of coastline within Shandong Province.Its cargo throughput has consistently ranked first globally for many years,and its container volume growth ranks second globally,forming a port cluster covering the entire industrial chain.
文摘Enhancing innovation-driven develop ment to accelerate the cultivation of new growth drivers is one of the major strate-gic tasks for China's economic work in 2026.In the context of the rapid global acceleration of technological develop ment and strong pushes from the West toward de-globalization and protection-ism,China’s efforts will require the continued deep integration of technology with its institutions,personnel,culture and market.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia,Grant No.KFU250098.
文摘In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.
基金National Natural Science Foundation of China,No.42101252。
文摘Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu province,a national leader in both economic and agricultural development,as a case area to construct a multidimensional framework for assessing the recessive morphological characteristics of multifunctional cultivated land use.We examine temporal dynamics,spatial heterogeneity,and propose an integrated zoning strategy based on empirical analysis.The results reveal that:(1)The recessive morphology index shows a consistent upward trend,with structural breaks in 2007 and 2013,and a spatial shift from“higher in the east and lower in the west”to“higher in the south and lower in the north.”(2)Coordination among sub-dimensions of the index has steadily improved.(3)The index is expected to continue rising in the next decade,though at a slower pace.(4)To promote coordinated multidimensional land-use development,we recommend a policy framework that reinforces existing strengths,addresses weaknesses,and adapts zoning schemes to current spatial conditions.This research offers new insights into multifunctional cultivated land systems and underscores their role in enhancing human well-being,securing food supply,and supporting sustainable urban-rural integration.
文摘The third International Standardization Youth Star Competition is held in Qingdao.We are very pleased to see that 236 teams from renowned domestic universities are actively participating in the competition.ISO has also sent a representative to Qingdao,demonstrating its high level of attention and support for the competition.
基金supported by the National Natural Science Foundation of China(No.52070057)China Postdoctoral Science Foundation(No.2023M730855)Heilongjiang Postdoctoral Fund(No.LBH-Z22183)for financial support。
文摘Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.
基金supported by the National Key Research and Development Program(2023YFF1001500)the Local Financial Funds of National Agricultural Science and Technology Center,Chengdu(NASC2022KR02,NASC2023TD08,NASC2021ST08,NASC2021PC04,NASC2022KR07,NASC2022KR06,and NASC2023ST04)+2 种基金the Agricultural Science and Technology Innova-tion Program(ASTIP-34-IUA-01,ASTIP-34-IUA-02,ASTIP-IUA-2023003,and ASTIP2024-34-IUA-09)the Central Public-interest Scientific Institution Basal Research Fund(Y2023YJ07 and SZ202403)the Sichuan Science and Technology Program(2023YFN003,2024NSFC1261,2023YFQ0100,and 2023ZYD0089).
文摘Rice(Oryza sativa L.)plays a pivotal role in global food security,yet its breeding is constrained by its long generation time and seasonality.To enhance rice breeding efficiency and meet future food demands,we have developed a vertical hydroponic breeding system integrated with light-emitting diodes(LEDs)light-ing in a closed plant factory(PF),which significantly accelerates rice growth and generation advance-ment.The results show that indica rice can be harvested as early as after 63 days of cultivation,a 50%reduction compared with field cultivation,enabling the annual harvesting of 5-6 generations within the PF.A hyperspectral imaging(HSI)system and attenuated total reflectance infrared(ATR-IR)spec-troscopy were further employed to characterize the chemical composition of the PF-and field-cultivated rice.Metabolomics analysis with ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)and gas chromatography-mass spectrometry(GC-MS)revealed that,com-pared with the field-cultivated rice,the PF-cultivated rice exhibited an up-regulation of total phenolic acids along with 68 non-volatile and 19 volatile metabolites,such as isovitexin,succinic acid,and methylillicinone F.Overall,this study reveals the unique metabolic profile of PF-cultivated rice and high-lights the potential of PFs to accelerate the breeding of crops such as rice,offering an innovative agricul-tural strategy to support food security in the face of global population growth and climate change.
基金he National Key Research and Development Program of China(2022YFD2300304)the National Natural Science Foundation of China(31671617)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods:plastic film mulching dry cultivation(PFMC),bare dry cultivation(BC),and continuous flooding cultivation(CF)as control.There was no significant difference in upland rice yield between PFMC and BC,nor in paddy rice yield between PFMC and CF.Compared with CF,the two varieties'yields decreased significantly with BC.Dry cultivation,especially PFMC,could decrease the active filling period,chalky rice rate,chalkiness,amylose content,gel consistency,breakdown viscosity,the ratio of glutelin to prolamin,and leaf senescence while increasing water use efficiency,protein components content,setback viscosity,grain starch branching enzyme(Q-enzyme)activity,and average filling rate.Compared with paddy rice,upland rice had a lower yield,shorter active filling period,lower chalkiness grain rate and gel consistency,higher amylose content,breakdown viscosity,protein components content,and average filling rate.Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.Reasonable dry cultivation methods could balance yield and quality,especially by improving rice's nutritional and appearance quality.
基金The Enhancement Project of Young Teachers Research Innovation Ability(JKC2022006)Beijing Municipal Higher Education Institutions’Teacher Team Construction Support Plan-High-Level Teaching Innovation Team(BPHR20220211)+1 种基金Beijing Higher Education Undergraduate Teaching Reform and Innovation Project(2023003)2024 Beijing University of Agriculture Student Party Members“Vanguard Force Action”Project。
文摘This paper discusses the development characteristics of urban horticulture under the background of smart agriculture,as well as the application of artificial intelligence technology in it.It analyzes the importance of highly skilled talents in urban agriculture in the era of smart agriculture and their cultivation pathways and practices.It proposes measures such as building multi-level practical teaching platforms,implementing the“Enjoy Horticulture”series of high-quality activities,and establishing the“1234”applied talent training model to cultivate high-quality talents that meet the development needs of modern urban horticulture industry.Taking Beijing University of Agriculture and other universities as examples,the paper analyzes the practical cases and effects of the urban horticulture discipline’s industry-education-research collaborative talent training model,which has reference significance for further improving and perfecting the urban horticulture industry-education-research collaborative talent training plan.
基金funded by the Science and Technology Innovation Programof Jiangsu Province,China for“Carbon Dioxide Emission Peaking and Carbon Neutrality”(BE2022307).
文摘To promote the growth of cutting seeding of poplar(Populus L.),nitrogen(N)fertilizer and surface weed managements were required.We here conducted a pot experiment to examine the effects of natural vegetation,barnyardgrass(Echinochloa Beauv.),and sesbania(Sesbania cannabina pers.)on the growth of poplar cutting seedlings,soil properties,and ammonia(NH3)volatilization under three N inputs(0,0.5,and 1.5 g/pot,i.e.,N0,N0.5,and N1,respectively).Results showed that N application promoted the growth of poplar cutting seedlings,including plant height,ground diameter,and biomass,compared with N0 treatment.Moreover,under N0,sesbania significantly increased the plant height by 87.1%,barnyardgrass and sesbania significantly increased the ground diameter(16.2%and 51.5%),and biomass(67.4%and 74.7%)of poplar cutting seedlings,compared with natural vegetation management.Compared to natural vegetation,soil organic matter(SOM)of barnyardgrass and sesbania covered soil significantly increased by 12.4%and 18.7%at N1,respectively.In addition,soil total N(TN)content was significantly increased by 15.8%in barnyardgrass planted at N0.The soil ammonium N(NH_(4)^(+)-N)content decreased with the planting of barnyardgrass and sesbania across all levels of N application.At N0.5,the nitrate N(NO_(3)^(−)-N)content of soil planted with barnyardgrass significantly increased compared to both the natural vegetation and the sesbania groups.Compared to the natural vegetation,the soil available phosphorus(AP)content of the barnyardgrass group significantly increasing by 78.8%at N0.5,soil available potassium(AK)content was significantly reduced by 12.5%in the sesbania group at N0 and increased by 24.1%in the barnyardgrass group at N1.We found that cumulative NH3 emissions were significantly higher in all treatment groups at the N1 level than that at the N0.5 level,while the differences among the three plants treated were not significant.The results suggest that both barnyardgrass and sesbania promote seedling growth in the short term,while also increase certain properties.Therefore,effective herb management during the seedling stage is recommended in nurseries to support seedling growth and retain soil fertility.
基金funded by the National Natural Science Foundation of China(Grant No.32201896)the Zhejiang Province Key Research and Development Plan Project,China(Grant No.2022C02034)the National Modern Agricultural Industrial Technology System Construction Project,China(Grant No.CARS-01-21).
文摘Rice yield is heavily reliant on the number of spikelets per panicle,a factor determined by the processes of spikelet differentiation and degeneration.In rice cultivars with large panicles,spikelet degeneration negates the advantages of large panicle and constrains yield potential.Environmental stress-induced metabolic disorders in plants aggravate spikelet degeneration,with the sensitive period for this process commencing approximately 15‒20 d before panicle heading.Notable positional variations occur within the panicle,with significantly higher spikelet degeneration rates at the basal than at the upper positions.An imbalance of carbon and nitrogen metabolism represents the primary physiological basis for aggravated spikelet degeneration under abiotic stress.Impaired carbon and nitrogen metabolism leads to disordered energy metabolism and disrupted respiratory electron transport,which accelerates the apoptosis of young spikelets through excessive reactive oxygen species accumulation.Sucrose serves as the main carbohydrate source for spikelet development,demonstrating an apical dominance pattern that favors spikelet formation.However,under abiotic stress,the inhibition of sucrose decomposition,rather than sucrose transport impairment,predominantly contributes to aggravated spikelet degeneration at the basal panicle positions.Brassinolide and auxin have a significant relationship with spikelet formation,potentially mediating apical dominance.Specifically,brassinolide enhances sucrose accumulation and utilization,thereby alleviating spikelet degeneration.At present,the mechanisms underlying rice spikelet degeneration have not been fully revealed,and the joint effects of hormones,carbohydrates,and carbon and nitrogen metabolism on this process require further investigation.To reduce the spikelet degeneration,the strategic application of water and fertilizer to establish a stable rice population can enhance the rice plants’resilience to abiotic stress.An effective approach to reducing spikelet degeneration is to increase the dry matter occupancy of each spikelet during the panicle initiation period.
基金financially supported by the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET-RS-2024–00402320)by the Meterials/Parts Technology Development Pro-gram(1415187291,Development of composite formulation with a sustained release(gene)for the treatment of companion animal sarcopenia)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat through optimization of the cell source and organization process.Results We engineered fibroblasts into myogenic cells via non-viral introduction of the MYOD1 gene,avoiding viral methods for safety.After confirming the stable derivation of myogenic cells,we combined knockout(KO)of MSTN,a negative regulator of myogenesis,with MYOD1-mediated myogenesis to improve cultivated meat production.Primary cells from MSTN KO cattle exhibited enhanced myogenic potential.Additionally,when tested in immortalized fibroblasts,myostatin treatment reduced MYOD1-induced myogenesis in two-dimensional cultures,while MSTN knockout increased it.To achieve muscle-like cell alignment,we employed digital light processing(DLP)-based three-dimensional(3D)bioprinting to organize cells into 3D groove-shaped hydrogels.These bioactive hydrogels supported stable cell proliferation and significantly improved muscle cell alignment.Upon differentiation into myotubes,the cells demonstrated an ordered alignment,particularly the MSTN KO cells,which showed highly efficient differentiation.Conclusions The integration of genetic modification and advanced DLP 3D bioprinting with groove-patterned hydrogels provides an effective strategy for producing high-quality,muscle-aligned cultivated meat.
基金Supported by Quality Engineering Teaching Research Project of Anhui Agricultural University(2023aujyxm013,2023aujyxm002)Research Project on Quality Engineering Experimental Teaching and Teaching Laboratory Construction of Anhui Agricultural University(2024ausyyj002)Quality Engineering Teaching Research Project of Anhui Province(2020jyxm0504,2024jyxm0141).
文摘In the context of"high-quality development"construction,the establishment and operational status of the national-level scientific research platforms at provincial universities—specifically,the large-scale instrument sharing platforms—are critically linked to the production of scientific research outcomes and the development of interdisciplinary talents.This study focuses on the public platform of the State Key Laboratory of Tea Plant Germplasm Innovation and Resource Utilization,aiming to innovate the management system,establish a technical platform,effectively integrate resources,and actively engage graduate students in the platform management.While ensuring the efficient operation of the large-scale instrument platform at state key laboratories,it offers a novel approach to cultivating graduate students into versatile talents.
基金Supported by Innovation Project of Guangxi Graduate Education of Guangxi University of Chinese Medicine(YJSJG201602)Special Project on Innovation and Entrepreneurship Education in Colleges and Universities under the"14 th Five-Year Plan"of Guangxi Education Science(2022ZJY2965).
文摘The cultivation of innovative talents has become the primary objective of talent development in colleges and universities and is also essential for the personal development of master's degree students.Ethnic medicine,a key discipline at Guangxi University of Chinese Medicine,aims to cultivate high-level master's degree talents who possess comprehensive qualities,strong innovative capabilities,and distinctive characteristics of Zhuang medicine.This program is designed to better serve the local economic development and social needs of Guangxi,thereby promoting the substantive advancement of higher education within traditional medical institutions.