In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, ther...In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, there are relatively few degrees of freedom that can be manipulated in order to minimize the total annualized cost. The reflux ratio can influence the steady-state operating point and therefore influence the total annualized cost. The trade-offs between reflux ratios and total annualized cost were discussed. The Cuckoo optimization algorithm was applied to obtain a correlation for the optimum value of the reflux ratio as a power function of the economic parameters of energy price and capital cost. The results show that, at low energy price or high capital cost, the optimum reflux factor is high.展开更多
Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,...Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method.展开更多
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ...Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.展开更多
To improve the location accuracy, a hybrid location algorithm based on cuckoo and statistical manifold method is proposed. It combines the cuckoo algorithm's strong global optimization ability and the statistical ...To improve the location accuracy, a hybrid location algorithm based on cuckoo and statistical manifold method is proposed. It combines the cuckoo algorithm's strong global optimization ability and the statistical manifold<span>’</span><span>s accurate positioning ability fully. The simulation results show that the hybrid location algorithm has higher accuracy and reduces the influence of initial value selection on location accuracy.</span>展开更多
We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to es...We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.展开更多
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In...Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
This paper formulates a new framework to estimate the target position by adopting cuckoo search(CS)positioning algorithm. Addressing the nonlinear optimization problem is a crucial spot in the location system of time ...This paper formulates a new framework to estimate the target position by adopting cuckoo search(CS)positioning algorithm. Addressing the nonlinear optimization problem is a crucial spot in the location system of time difference of arrival(TDOA). With the application of the Levy flight mechanism, the preferential selection mechanism and the elimination mechanism, the proposed approach prevents positioning results from falling into local optimum. These intelligent mechanisms are useful to ensure the population diversity and improve the convergence speed. Simulation results demonstrate that the cuckoo localization algorithm has higher locating precision and better performance than the conventional methods. Compared with particle swarm optimization(PSO) algorithm and Newton iteration algorithm, the proposed method can obtain the Cram′er-Rao lower bound(CRLB) and quickly achieve the global optimal solutions.展开更多
The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DA...The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (ep), minimum stopband error (es), high stopband attenuation (As), and als...In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (ep), minimum stopband error (es), high stopband attenuation (As), and also free from limit cycle effect is proposed using cuckoo search (CS) algorithm. In the proposed method, error function, which is multi-model and non-differentiable in the heuristic surface, is constructed as the mean squared difference between the designed and desired response in frequency domain, and is optimized using CS algorithm. Computational efficiency of the proposed technique for exploration in search space is examined, and during exploration, stability of filter is maintained by considering lattice representation of the denominator polynomials, which requires less computational complexity as well as it improves the exploration ability in search space for designing higher filter taps. A comparative study of the proposed method with other algorithms is made, and the obtained results show that 90% reduction in errors is achieved using the proposed method. However, computational complexity in term of CPU time is increased as compared to other existing algorithms.展开更多
The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter stra...The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.展开更多
The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo searc...The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo search algorithm. In order to enhance the search capability of the cuckoo search algorithm, the adaptive detection probability and amplification factor are designed. Finally, the control allocation method based on the proposed improved cuckoo search algorithm is applied to the tracking control problem of the innovative control effector aircraft. The comparative simulation results demonstrate the superiority and effectiveness of the proposed improved cuckoo search algorithm in control allocation of aircraft.展开更多
Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a ...Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming(MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and transforms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We applied the Improved Cuckoo Search(ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efficiency. The blending solution can provide a reference for refineries to find the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials.展开更多
The existing methods for identifying recursive systematic convolutional encoders with high robustness require to test all the candidate generator matrixes in the search space exhaustively.With the increase of the code...The existing methods for identifying recursive systematic convolutional encoders with high robustness require to test all the candidate generator matrixes in the search space exhaustively.With the increase of the codeword length and constraint length,the search space expands exponentially,and thus it limits the application of these methods in practice.To overcome the limitation,a novel identification method,which gets rid of exhaustive test,is proposed based on the cuckoo search algorithm by using soft-decision data.Firstly,by using soft-decision data,the probability that a parity check equation holds is derived.Thus,solving the parity check equations is converted to maximize the joint probability that parity check equations hold.Secondly,based on the standard cuckoo search algorithm,the established cost function is optimized.According to the final solution of the optimization problem,the generator matrix of recursive systematic convolutional code is estimated.Compared with the existing methods,our proposed method does not need to search for the generator matrix exhaustively and has high robustness.Additionally,it does not require the prior knowledge of the constraint length and is applicable in any modulation type.展开更多
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ...This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.展开更多
The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are v...The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly.展开更多
Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor ...Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.展开更多
In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algo...In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.展开更多
In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramou...In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramount when sharing such information with authorized healthcare providers.Although electronic patient records and the internet have facilitated the exchange of medical information among healthcare providers,concerns persist regarding the security of the data.The security of Electronic Health Record Systems(EHRS)can be improved by employing the Cuckoo Search Algorithm(CS),the SHA-256 algorithm,and the Elliptic Curve Cryptography(ECC),as proposed in this study.The suggested approach involves usingCS to generate the ECCprivate key,thereby enhancing the security of data storage in EHR.The study evaluates the proposed design by comparing encoding and decoding times with alternative techniques like ECC-GA-SHA-256.The research findings indicate that the proposed design achieves faster encoding and decoding times,completing 125 and 175 iterations,respectively.Furthermore,the proposed design surpasses other encoding techniques by exhibiting encoding and decoding times that are more than 15.17%faster.These results imply that the proposed design can significantly enhance the security and performance of EHRs.Through the utilization of CS,SHA-256,and ECC,this study presents promising methods for addressing the security challenges associated with EHRs.展开更多
文摘In this study, an enthalpy-concentration method was applied in order to model a steady state continuous benzene-toluene mixture distillation column. For a distillation tower such as the benzene- toluene splitter, there are relatively few degrees of freedom that can be manipulated in order to minimize the total annualized cost. The reflux ratio can influence the steady-state operating point and therefore influence the total annualized cost. The trade-offs between reflux ratios and total annualized cost were discussed. The Cuckoo optimization algorithm was applied to obtain a correlation for the optimum value of the reflux ratio as a power function of the economic parameters of energy price and capital cost. The results show that, at low energy price or high capital cost, the optimum reflux factor is high.
基金Supported by the Anhui Province Sports Health Information Monitoring Technology Engineering Research Center Open Project (KF2023012)。
文摘Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method.
基金Supported by the Russian Science Foundation(Agreement 23-41-10001,https://rscf.ru/project/23-41-10001/).
文摘Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.
文摘To improve the location accuracy, a hybrid location algorithm based on cuckoo and statistical manifold method is proposed. It combines the cuckoo algorithm's strong global optimization ability and the statistical manifold<span>’</span><span>s accurate positioning ability fully. The simulation results show that the hybrid location algorithm has higher accuracy and reduces the influence of initial value selection on location accuracy.</span>
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60473042,60573067 and 60803102)
文摘We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.
基金supported by the National Key Research and Development Program of China [grant number2017YFA0604500]
文摘Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.
基金the National Natural Science Foundation of China(No.61571146)the Fundamental Research Funds for the Central Universities of China(No.HEUCFP201769)
文摘This paper formulates a new framework to estimate the target position by adopting cuckoo search(CS)positioning algorithm. Addressing the nonlinear optimization problem is a crucial spot in the location system of time difference of arrival(TDOA). With the application of the Levy flight mechanism, the preferential selection mechanism and the elimination mechanism, the proposed approach prevents positioning results from falling into local optimum. These intelligent mechanisms are useful to ensure the population diversity and improve the convergence speed. Simulation results demonstrate that the cuckoo localization algorithm has higher locating precision and better performance than the conventional methods. Compared with particle swarm optimization(PSO) algorithm and Newton iteration algorithm, the proposed method can obtain the Cram′er-Rao lower bound(CRLB) and quickly achieve the global optimal solutions.
文摘The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
文摘In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (ep), minimum stopband error (es), high stopband attenuation (As), and also free from limit cycle effect is proposed using cuckoo search (CS) algorithm. In the proposed method, error function, which is multi-model and non-differentiable in the heuristic surface, is constructed as the mean squared difference between the designed and desired response in frequency domain, and is optimized using CS algorithm. Computational efficiency of the proposed technique for exploration in search space is examined, and during exploration, stability of filter is maintained by considering lattice representation of the denominator polynomials, which requires less computational complexity as well as it improves the exploration ability in search space for designing higher filter taps. A comparative study of the proposed method with other algorithms is made, and the obtained results show that 90% reduction in errors is achieved using the proposed method. However, computational complexity in term of CPU time is increased as compared to other existing algorithms.
基金funded by the NationalKey Research and Development Program of China under Grant No.11974373.
文摘The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.
基金supported by the National Natural Science Foundation of China(61273083 and 61374012)
文摘The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo search algorithm. In order to enhance the search capability of the cuckoo search algorithm, the adaptive detection probability and amplification factor are designed. Finally, the control allocation method based on the proposed improved cuckoo search algorithm is applied to the tracking control problem of the innovative control effector aircraft. The comparative simulation results demonstrate the superiority and effectiveness of the proposed improved cuckoo search algorithm in control allocation of aircraft.
基金supported by the National Natural Science Foundation of China(No.21365008)the Science Foundation of Guangxi province of China(No.2012GXNSFAA053230)
文摘Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming(MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and transforms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We applied the Improved Cuckoo Search(ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efficiency. The blending solution can provide a reference for refineries to find the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials.
文摘The existing methods for identifying recursive systematic convolutional encoders with high robustness require to test all the candidate generator matrixes in the search space exhaustively.With the increase of the codeword length and constraint length,the search space expands exponentially,and thus it limits the application of these methods in practice.To overcome the limitation,a novel identification method,which gets rid of exhaustive test,is proposed based on the cuckoo search algorithm by using soft-decision data.Firstly,by using soft-decision data,the probability that a parity check equation holds is derived.Thus,solving the parity check equations is converted to maximize the joint probability that parity check equations hold.Secondly,based on the standard cuckoo search algorithm,the established cost function is optimized.According to the final solution of the optimization problem,the generator matrix of recursive systematic convolutional code is estimated.Compared with the existing methods,our proposed method does not need to search for the generator matrix exhaustively and has high robustness.Additionally,it does not require the prior knowledge of the constraint length and is applicable in any modulation type.
基金supported by the National Natural Science Foundation of China(61971470).
文摘This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(71471140)
文摘The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly.
文摘Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.
文摘In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.
文摘In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramount when sharing such information with authorized healthcare providers.Although electronic patient records and the internet have facilitated the exchange of medical information among healthcare providers,concerns persist regarding the security of the data.The security of Electronic Health Record Systems(EHRS)can be improved by employing the Cuckoo Search Algorithm(CS),the SHA-256 algorithm,and the Elliptic Curve Cryptography(ECC),as proposed in this study.The suggested approach involves usingCS to generate the ECCprivate key,thereby enhancing the security of data storage in EHR.The study evaluates the proposed design by comparing encoding and decoding times with alternative techniques like ECC-GA-SHA-256.The research findings indicate that the proposed design achieves faster encoding and decoding times,completing 125 and 175 iterations,respectively.Furthermore,the proposed design surpasses other encoding techniques by exhibiting encoding and decoding times that are more than 15.17%faster.These results imply that the proposed design can significantly enhance the security and performance of EHRs.Through the utilization of CS,SHA-256,and ECC,this study presents promising methods for addressing the security challenges associated with EHRs.