Visible near-infrared (vis-NIR) and portable X-ray fluorescence (pXRF) spectrometers have been increasingly utilized for predicting soil properties worldwide. However, only a few studies have focused on splitting the ...Visible near-infrared (vis-NIR) and portable X-ray fluorescence (pXRF) spectrometers have been increasingly utilized for predicting soil properties worldwide. However, only a few studies have focused on splitting the predictive models by horizons to evaluate prediction performance and systematically compare prediction performance for A, B, and combined A+B horizons. Therefore, we investigated the performance of pXRF and vis-NIR spectra, as individual or combined, for predicting the clay, silt, sand, total carbon (TC), and pH of soils developed in loess, and compared their prediction performance for A, B, and A+B horizons. Soil samples (176 in A horizon and 172 in B horizon) were taken from Mollisols and Alfisols in 136 pedons in Wisconsin, USA and analyzed for clay, silt, sand, pH, and TC. The pXRF and vis-NIR spectrometers were used to measure the pXRF and vis-NIR soil spectra. Data were separated into calibration (n = 244, 70%) and validation (n = 104, 30%) datasets. The Savitzky-Golay filter was applied to preprocess the pXRF and vis-NIR spectra, and the first 10 principal components (PCs) were selected through principal component analysis (PCA). Five types of predictor, i.e., PCs from vis-NIR spectra, pXRF of beams at 0–40 and 0–10 keV (XRF40 and XRF10, respectively) spectra, combined XRF40 and XRF10 (XRF40+XRF10) spectra, and combined XRF40, XRF10, and vis-NIR (XRF40+XRF10+vis-NIR) spectra, were compared for predicting soil properties using a machine learning algorithm (Cubist model). A multiple linear regression (MLR) model was applied to predict clay, silt, sand, pH, and TC using pXRF elements. The results suggested that pXRF spectra had better prediction performance for clay, silt, and sand, whereas vis-NIR spectra produced better TC and pH predictions. The best prediction performance for sand (R2= 0.97), silt (R2= 0.95), and clay (R2= 0.84) was achieved using vis-NIR+XRF40+XRF10 spectra in B horizon, whereas the best prediction performance for TC (R2= 0.93) and pH (R2= 0.79) was achieved using vis-NIR+XRF40+XRF10 spectra in A+B horizon. For all soil properties, the best MLR model had a lower prediction accuracy than the Cubist model. It was concluded that pXRF and vis-NIR spectra can be successfully applied for predicting clay, silt, sand, pH, and TC with high accuracy for soils developed in loess, and that spectral models should be developed for different horizons to achieve high prediction accuracy.展开更多
Quantifying forest stand parameters is crucial in forestry research and environmental monitoring because it provides important factors for analyzing forest structure and comprehending forest resources.And the estimati...Quantifying forest stand parameters is crucial in forestry research and environmental monitoring because it provides important factors for analyzing forest structure and comprehending forest resources.And the estimation of crown density and volume has always been a prominent topic in forestry remote sensing.Based on GF-2 remote sensing data,sample plot survey data and forest resource survey data,this study used the Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.)and Pinus massoniana Lamb.as research objects to tackle the key challenges in the use of remote sensing technology.The Boruta feature selection technique,together with multiple stepwise and Cubist regression models,was used to estimate crown density and volume in portions of the research area’s stands,introducing novel technological methods for estimating stand parameters.The results show that:(i)the Boruta algorithm is effective at selecting the feature set with the strongest correlation with the dependent variable,which solves the problem of data and the loss of original feature data after dimensionality reduction;(ii)using the Cubist method to build the model yields better results than using multiple stepwise regression.The Cubist regression model’s coefficient of determination(R^(2))is all more than 0.67 in the Chinese fir plots and 0.63 in the P.massoniana plots.As a result,combining the two methods can increase the estimation accuracy of stand parameters,providing a theoretical foundation and technical support for future studies.展开更多
基金supported by the Scientific Research Projects(BAP)(No.2019-2757)of Eskisehir Osmangazi University for postdoc research at the Department of Soil Science,University of Wise on sin-Madison.
文摘Visible near-infrared (vis-NIR) and portable X-ray fluorescence (pXRF) spectrometers have been increasingly utilized for predicting soil properties worldwide. However, only a few studies have focused on splitting the predictive models by horizons to evaluate prediction performance and systematically compare prediction performance for A, B, and combined A+B horizons. Therefore, we investigated the performance of pXRF and vis-NIR spectra, as individual or combined, for predicting the clay, silt, sand, total carbon (TC), and pH of soils developed in loess, and compared their prediction performance for A, B, and A+B horizons. Soil samples (176 in A horizon and 172 in B horizon) were taken from Mollisols and Alfisols in 136 pedons in Wisconsin, USA and analyzed for clay, silt, sand, pH, and TC. The pXRF and vis-NIR spectrometers were used to measure the pXRF and vis-NIR soil spectra. Data were separated into calibration (n = 244, 70%) and validation (n = 104, 30%) datasets. The Savitzky-Golay filter was applied to preprocess the pXRF and vis-NIR spectra, and the first 10 principal components (PCs) were selected through principal component analysis (PCA). Five types of predictor, i.e., PCs from vis-NIR spectra, pXRF of beams at 0–40 and 0–10 keV (XRF40 and XRF10, respectively) spectra, combined XRF40 and XRF10 (XRF40+XRF10) spectra, and combined XRF40, XRF10, and vis-NIR (XRF40+XRF10+vis-NIR) spectra, were compared for predicting soil properties using a machine learning algorithm (Cubist model). A multiple linear regression (MLR) model was applied to predict clay, silt, sand, pH, and TC using pXRF elements. The results suggested that pXRF spectra had better prediction performance for clay, silt, and sand, whereas vis-NIR spectra produced better TC and pH predictions. The best prediction performance for sand (R2= 0.97), silt (R2= 0.95), and clay (R2= 0.84) was achieved using vis-NIR+XRF40+XRF10 spectra in B horizon, whereas the best prediction performance for TC (R2= 0.93) and pH (R2= 0.79) was achieved using vis-NIR+XRF40+XRF10 spectra in A+B horizon. For all soil properties, the best MLR model had a lower prediction accuracy than the Cubist model. It was concluded that pXRF and vis-NIR spectra can be successfully applied for predicting clay, silt, sand, pH, and TC with high accuracy for soils developed in loess, and that spectral models should be developed for different horizons to achieve high prediction accuracy.
基金supported by the project of the National Technology Extension Fund of Forestry,‘Forest Vegetation Carbon Storage Monitoring Technology Based on Watershed Algorithm’([2019]06)the National Natural Science Foundation of China,‘Study on Crown Models for Larix olgensis Based on Tree Growth’(31870620).
文摘Quantifying forest stand parameters is crucial in forestry research and environmental monitoring because it provides important factors for analyzing forest structure and comprehending forest resources.And the estimation of crown density and volume has always been a prominent topic in forestry remote sensing.Based on GF-2 remote sensing data,sample plot survey data and forest resource survey data,this study used the Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.)and Pinus massoniana Lamb.as research objects to tackle the key challenges in the use of remote sensing technology.The Boruta feature selection technique,together with multiple stepwise and Cubist regression models,was used to estimate crown density and volume in portions of the research area’s stands,introducing novel technological methods for estimating stand parameters.The results show that:(i)the Boruta algorithm is effective at selecting the feature set with the strongest correlation with the dependent variable,which solves the problem of data and the loss of original feature data after dimensionality reduction;(ii)using the Cubist method to build the model yields better results than using multiple stepwise regression.The Cubist regression model’s coefficient of determination(R^(2))is all more than 0.67 in the Chinese fir plots and 0.63 in the P.massoniana plots.As a result,combining the two methods can increase the estimation accuracy of stand parameters,providing a theoretical foundation and technical support for future studies.