This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy ...This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy based on the photoelectric effect, which has the potential to achieve significantly higher efficiency than current photovoltaic technology. The proposed CubeSat system consists of three main components: a tether unit, an energy harvesting unit, and the central 3U CubeSat body. The tether unit generates a cylindrical magnetic field along its main tether,effectively concentrating electrons from the solar wind to the energy harvesting unit. The energy harvesting unit includes a spherical electron receiver, functioning as a capacitor, which attracts electrons from the solar wind, as well as an annular flat solar sail that captures photons in the solar wind to eject electrons via the photoelectric effect, resulting in an electric current in the system.The Dyson-Harrop CubeSat is shown to be highly efficient as an energy-generation system, producing approximately 1 kW of power by a 3U CubeSat. This energy can be transmitted via microwave beams to other spacecraft or ground stations on the Earth. It is important to note that this estimation is based on first-principle estimations, and thorough theoretical analysis and experimental validation are required to confirm the feasibility of the concept.展开更多
The advanced infrared(IR) and microwave(MW) sounding systems have been providing atmospheric sounding information critical for nowcasting and improving weather forecasts through data assimilation in numerical weather ...The advanced infrared(IR) and microwave(MW) sounding systems have been providing atmospheric sounding information critical for nowcasting and improving weather forecasts through data assimilation in numerical weather prediction. In recent years, advanced IR and MW sounder systems are being proposed to be onboard CubeSats that are much more cost efficient than traditional satellite systems. An impact study using a regional Observing System Simulation Experiment on a local severe storm(LSS) was carried out to evaluate the alternative of using advanced MW and IR sounders for high-impact weather forecasting in mitigating the potential data gap of the Advanced Technology Microwave Sounder(ATMS) and the Cross-track Infrared Sounder(CrIS) on the Suomi-NPP(SNPP) or Joint Polar Satellite System(JPSS). It was found that either MicroMAS-2 or the CubeSat Infrared Atmospheric Sounder(CIRAS) on a single CubeSat was able to provide a positive impact on the LSS forecast, and more CubeSats with increased data coverage yielded larger positive impacts.MicroMAS-2 has the potential to mitigate the loss of ATMS, and CIRAS the loss of CrIS, on SNPP or JPSS, especially when multiple CubeSats are launched. There are several approximations and limitations to the present study, but these represent efficiencies appropriate to the principal goal of the study — gauging the relative values of these sensors.展开更多
Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors ...Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-mes-senger astronomy era.A compact CubeSat gamma-ray detector,including its hardware and firmware,was designed and implemented for the mission.The detector employs four Gd 2 Al 2 Ga 3 O 12:Ce(GAGG:Ce)scintillators coupled with four silicon photomultiplier(SiPM)arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions.The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29,2018.The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests,which were conducted in 2019.展开更多
The two line elements(TLEs),released by the North American Aerospace Defense Command(NORAD),are chosen for CubeSats' mission operators.Unfortunately,they have errors and other accompanied problems,which cause larg...The two line elements(TLEs),released by the North American Aerospace Defense Command(NORAD),are chosen for CubeSats' mission operators.Unfortunately,they have errors and other accompanied problems,which cause large deviations in the in-track component.When a TLE value is available at a certain epoch,the dominant error is the angular error.It is proposed to correct the angular error by solving-for the mean argument of latitude at the desired epoch.A batch least squares technique and range rate measurements are used for the correction process.With the assistance of satellite tool kit(STK)software and Matlab,a simulation to verify the orbit determination(OD)technique is implemented.This paper provides an angular correction low cost OD method and presents a complete analysis for various test cases.This approach maintains high accuracy in cross-track and radial and makes great improvement in in-track at the same time,but it is exclusive for circular orbits.When it is applied to an elliptical orbit,the error will be unacceptable.Therefore,the angular error is corrected using the longitude of periapsis which totally mitigates the error at the epoch under consideration.For inclinations less than 20 o,the mean longitude is preferred for the angular correction as it provides more accuracy compared with the mean argument of latitude.展开更多
This paper reveals a new design of UHF CubeSat antenna based on a modified Planar Inverted F Antenna(PIFA)for CubeSat communication.The design utilizes a CubeSat face as the ground plane.There is a gap of 5 mm beneath...This paper reveals a new design of UHF CubeSat antenna based on a modified Planar Inverted F Antenna(PIFA)for CubeSat communication.The design utilizes a CubeSat face as the ground plane.There is a gap of 5 mm beneath the radiating element that facilitates the design providing with space for solar panels.The prototype is fabricated using Aluminum metal sheet and measured.The antenna achieved resonance at 419 MHz.Response of the antenna has been investigated after placing a solar panel.Lossy properties of solar panels made the resonance shift about 20 MHz.This design addresses the frequency shifting issue after placing the antenna with the CubeSat body.This phenomenon has been analyzed considering a typical 1U and 2U CubeSat body with the antenna.The antenna achieved a positive realized gain of 0.7 dB and approximately 78%of efficiency at the resonant frequency with providing 85%of open space for solar irradiance onto the solar panel.展开更多
The free space optical communication plays an important role in space-terrestrial integrated network due to its advantages including great improvement of data rate performance,low cost,security enhancement when compar...The free space optical communication plays an important role in space-terrestrial integrated network due to its advantages including great improvement of data rate performance,low cost,security enhancement when compared with conventional radio frequency(RF) technology.Meanwhile,CubeSats become popular in low earth orbit(LEO) network because of the low cost,fast response and the possibility of constituting constellations and formations to execute missions that a single large satellite cannot do.However,it is a difficult task to build an optical communication link between the CubeSats.In this paper,the cuttingedge laser technology progress on the CubeSats is reviewed.The characters of laser link on the CubeSat and the key techniques in the laser communication terminal(LCT) design are demonstrated.展开更多
CubeSats have evolved from purely educational tools to a standard platform for technology demonstration,scientific instrumentation and application in less than a decade.They open the door to new challenges and interpl...CubeSats have evolved from purely educational tools to a standard platform for technology demonstration,scientific instrumentation and application in less than a decade.They open the door to new challenges and interplanetary missions which lead to the direct realization of autonomous orbit determination(AOD)which has been investigated before with different integrated sensors combined with various filters.Mostly these studies were carried out for larger satellites with more accurate sensors.Magnetometer and sun sensor combined with extended Kalman filter(EKF)are chosen to complete AOD task considering their light weight.For the purpose of AOD and the computational cost requirements imposed on CubeSats,it is important to develop and apply low cost on-board models.In this perspective,a magnetic model based on a table look up is proposed to generate the reference magnetic field with a low computational burden.In current article the simulations through Matlab and Satellites Tool Kit(STK)especially focus on the accuracy of the AOD system provided by this model.For analysis three EKFs are carried out with different calculation models and data types.The system based on the proposed model is fully autonomous,low-cost and has moderate-accuracy required by most CubeSats missions.The AOD system can be applied as main or backup system depending on the space missions′demands.展开更多
As the role of missions and experiments carried out in outer space becomes more and more essential in our understanding of many earthly problems,such as resource management,environmental problems,and disaster manageme...As the role of missions and experiments carried out in outer space becomes more and more essential in our understanding of many earthly problems,such as resource management,environmental problems,and disaster management,as well as space science questions,thanks to their lower cost and faster development process CubeSats can benefit humanity and therefore,young scientists and engineers have been motivated to research and develop new CubeSat missions.Not very long after their inception,CubeSats have evolved to become accepted platforms for scientific and commercial applications.The last couple of years showed that they are a feasible tool for conducting scientific experiments,not only in the Earth orbit but also in the interplanetary space.For many countries,a CubeSat mission could prompt the community and young teams around the world to build the national capacity to launch and operate national space missions.This paper presents an overview of the key scientific and engineering gateways opened up to the younger scientific community by the advent and adaptation of new technology into CubeSat missions.The role of cooperation and the opportunities for capacity-building and education are also explored.Thus,the present article also aims to provide useful recommendations to scientists,early-career researchers,engineers,students,and anyone who intends to explore the potential and opportunities offered by CubeSats and CubeSats-based missions.展开更多
The FloripaSat-I project consists of an initiative from the Federal University of Santa Catarina(UFSC),in Brazil,to train students to design,test and integrate innovative space systems.The group just developed its fir...The FloripaSat-I project consists of an initiative from the Federal University of Santa Catarina(UFSC),in Brazil,to train students to design,test and integrate innovative space systems.The group just developed its first open-source CubeSat,the FloripaSat-I,which aims to empower students to develop space systems through a practical approach,where they have full control of the design and test of a real spacecraft.The project has already gone through all the stages of a CubeSat mission prior to the launching and operation stages.A prototype of the satellite,as well the engineering models 1 and 2(EM-I and EM-II)were built.The expertise provided by the engineering models allows the development of a functional flight model(FM).This paper presents the validation and qualification tests that pass various FloripaSat-I models,from the engineering model to the flight model.All stages of the project are described,the tests performed in each phase,as well as the lessons learned.Thus,this paper serves as a guidance for other university teams that want to test their own CubeSats,as well as teams that want to use the open-source hardware and software left as heritage by this project.展开更多
The observation of the low-energyγ-ray(0.1 to 30 MeV)sky has been significantly limited since the COMPTEL instrument aboard the Compton Gamma Ray Observatory(CGRO)satellite was decommissioned in 2000.The exploration...The observation of the low-energyγ-ray(0.1 to 30 MeV)sky has been significantly limited since the COMPTEL instrument aboard the Compton Gamma Ray Observatory(CGRO)satellite was decommissioned in 2000.The exploration ofγ-ray photons within this energy band,often referred to as the MeV gap,is crucial to address numerous unresolved mysteries in high-energy and multi-messenger astrophysics.Although several large MeVγ-ray missions have been proposed(e.g.,e-ASTROGAM,AMEGO,and COSI),most of these are in the planning phase,with launches not expected until the next decade,at the earliest.Recently,there has been a surge in proposed CubeSat missions as cost-effective and rapidly implementable pathfinder alternatives.An MeV CubeSat dedicated toγ-ray astronomy could serve as a valuable demonstrator for large-scale future MeV payloads.This paper proposes aγ-ray payload design with a silicon-based tracker and a cesium iodide-based calorimeter.We report the results of a simulation study to assess the performance of this payload concept and compare the results with those of previousγ-ray instruments.As part of the performance assessment and comparison,we show that with our proposed payload design,a sensitivity better than IBIS can be achieved for energies between 0.1 and 10 MeV,and for energies up to around 1 MeV,the achieved sensitivity is comparable to COMPTEL,therefore opening up a window toward cost-effective observational astronomy with comparable performance to past missions.展开更多
Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse an...Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse and predict relevant fluid dynamics phenomena within the thrust chamber of small-scale HREs.This work applies such techniques to investigate two unexpected behaviours observed in a 10 N-class hydrogen peroxide-based hybrid thruster:an uneven regression rate during High-Density Polyethylene(HDPE)and Acrylonitrile Butadiene Styrene(ABS)fuel tests,and non-negligible axial consumption in the ABS test case.The present study seeks to identify their fluid-dynamic origins by analysing key aspects of the thruster’s internal ballistics.The impact of recirculation zones and mixing on regression rates is quantified,as is the effect of grain heating on performance.Although already known in the present scientific literature,these phenomena prove to become particularly relevant for small-scale engines.Furthermore,the study demonstrates how appropriate numerical tools can replicate experimental findings,helping to foresee and mitigate undesirable behaviours in the design phases of future HRE propulsion systems.CFD results match the final HDPE grain geometry,reproducing the uneven port diameters with a maximum error below 9%.For ABS,axial regression is accurately captured,confirming the model’s reliability.Furthermore,average regression rates differ by only 1.60%and 1.20%for HDPE and ABS,respectively,while mass consumption is reproduced within 1.70%for HDPE and 3.01%for ABS.Overall,the results of the work demonstrate the reliability of the numerical approach adopted.This enriches the analysis capabilities devoted to 10 N-class engines,provides an additional tool for simulating the internal ballistics of small-scale hybrid thrusters,and integrates the existing literature with new insights into their fluid dynamics.展开更多
“赫拉”(Hera)任务是由欧空局(ESA)主导并与美国国家航空航天局(NASA)合作开展的行星防御任务之一,通过对“双小行星重定向测试”(Double Asteroid Redirection Test,DART)任务撞击的“迪蒂莫斯”(Didymos)双星小行星系统开展近距离探...“赫拉”(Hera)任务是由欧空局(ESA)主导并与美国国家航空航天局(NASA)合作开展的行星防御任务之一,通过对“双小行星重定向测试”(Double Asteroid Redirection Test,DART)任务撞击的“迪蒂莫斯”(Didymos)双星小行星系统开展近距离探测、物理特性表征及精确定轨等工作,从而实现撞击后小行星偏转评估、撞击坑产生和演化评估、撞击过程能量传递效率的评估,以此验证撞击防御的有效性并为后续合理有效的撞击防御方案设计提供重要的数据支撑。此外,任务通过撞击翻出的小行星表层以下物质的探测进一步研究太阳系早期小行星形成过程等科学问题。本文概述“赫拉”探测任务探测器设计、载荷配置、立方星设计、任务过程等工程实施特点,针对未来中国小行星防御技术的发展和规划提出思考和建议。展开更多
基金supported by the Discovery grant(No.RGPIN-2024-06290)the CREATE grant(No.504156)of the Natural Sciences and Engineering Research Council of Canada.
文摘This paper presents a novel design for a Dyson-Harrop CubeSat aimed at harvesting energy from the solar wind. Unlike current photovoltaic-based satellite energy generation, the Dyson-Harrop satellite generates energy based on the photoelectric effect, which has the potential to achieve significantly higher efficiency than current photovoltaic technology. The proposed CubeSat system consists of three main components: a tether unit, an energy harvesting unit, and the central 3U CubeSat body. The tether unit generates a cylindrical magnetic field along its main tether,effectively concentrating electrons from the solar wind to the energy harvesting unit. The energy harvesting unit includes a spherical electron receiver, functioning as a capacitor, which attracts electrons from the solar wind, as well as an annular flat solar sail that captures photons in the solar wind to eject electrons via the photoelectric effect, resulting in an electric current in the system.The Dyson-Harrop CubeSat is shown to be highly efficient as an energy-generation system, producing approximately 1 kW of power by a 3U CubeSat. This energy can be transmitted via microwave beams to other spacecraft or ground stations on the Earth. It is important to note that this estimation is based on first-principle estimations, and thorough theoretical analysis and experimental validation are required to confirm the feasibility of the concept.
基金partly supported by the NESDIS OPPA OSSE program [grant number NA15NES4320001]
文摘The advanced infrared(IR) and microwave(MW) sounding systems have been providing atmospheric sounding information critical for nowcasting and improving weather forecasts through data assimilation in numerical weather prediction. In recent years, advanced IR and MW sounder systems are being proposed to be onboard CubeSats that are much more cost efficient than traditional satellite systems. An impact study using a regional Observing System Simulation Experiment on a local severe storm(LSS) was carried out to evaluate the alternative of using advanced MW and IR sounders for high-impact weather forecasting in mitigating the potential data gap of the Advanced Technology Microwave Sounder(ATMS) and the Cross-track Infrared Sounder(CrIS) on the Suomi-NPP(SNPP) or Joint Polar Satellite System(JPSS). It was found that either MicroMAS-2 or the CubeSat Infrared Atmospheric Sounder(CIRAS) on a single CubeSat was able to provide a positive impact on the LSS forecast, and more CubeSats with increased data coverage yielded larger positive impacts.MicroMAS-2 has the potential to mitigate the loss of ATMS, and CIRAS the loss of CrIS, on SNPP or JPSS, especially when multiple CubeSats are launched. There are several approximations and limitations to the present study, but these represent efficiencies appropriate to the principal goal of the study — gauging the relative values of these sensors.
基金supported by the Tsinghua University Initiative Scientific Research Program,the National Natural Science Foundation of China(Nos.11633003,12025301,and 11821303)the National Key R&D Program of China(Nos.2018YFA0404502 and 2016YFA040080X).
文摘Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-mes-senger astronomy era.A compact CubeSat gamma-ray detector,including its hardware and firmware,was designed and implemented for the mission.The detector employs four Gd 2 Al 2 Ga 3 O 12:Ce(GAGG:Ce)scintillators coupled with four silicon photomultiplier(SiPM)arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions.The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29,2018.The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests,which were conducted in 2019.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (No.20113219110025)
文摘The two line elements(TLEs),released by the North American Aerospace Defense Command(NORAD),are chosen for CubeSats' mission operators.Unfortunately,they have errors and other accompanied problems,which cause large deviations in the in-track component.When a TLE value is available at a certain epoch,the dominant error is the angular error.It is proposed to correct the angular error by solving-for the mean argument of latitude at the desired epoch.A batch least squares technique and range rate measurements are used for the correction process.With the assistance of satellite tool kit(STK)software and Matlab,a simulation to verify the orbit determination(OD)technique is implemented.This paper provides an angular correction low cost OD method and presents a complete analysis for various test cases.This approach maintains high accuracy in cross-track and radial and makes great improvement in in-track at the same time,but it is exclusive for circular orbits.When it is applied to an elliptical orbit,the error will be unacceptable.Therefore,the angular error is corrected using the longitude of periapsis which totally mitigates the error at the epoch under consideration.For inclinations less than 20 o,the mean longitude is preferred for the angular correction as it provides more accuracy compared with the mean argument of latitude.
文摘This paper reveals a new design of UHF CubeSat antenna based on a modified Planar Inverted F Antenna(PIFA)for CubeSat communication.The design utilizes a CubeSat face as the ground plane.There is a gap of 5 mm beneath the radiating element that facilitates the design providing with space for solar panels.The prototype is fabricated using Aluminum metal sheet and measured.The antenna achieved resonance at 419 MHz.Response of the antenna has been investigated after placing a solar panel.Lossy properties of solar panels made the resonance shift about 20 MHz.This design addresses the frequency shifting issue after placing the antenna with the CubeSat body.This phenomenon has been analyzed considering a typical 1U and 2U CubeSat body with the antenna.The antenna achieved a positive realized gain of 0.7 dB and approximately 78%of efficiency at the resonant frequency with providing 85%of open space for solar irradiance onto the solar panel.
文摘The free space optical communication plays an important role in space-terrestrial integrated network due to its advantages including great improvement of data rate performance,low cost,security enhancement when compared with conventional radio frequency(RF) technology.Meanwhile,CubeSats become popular in low earth orbit(LEO) network because of the low cost,fast response and the possibility of constituting constellations and formations to execute missions that a single large satellite cannot do.However,it is a difficult task to build an optical communication link between the CubeSats.In this paper,the cuttingedge laser technology progress on the CubeSats is reviewed.The characters of laser link on the CubeSat and the key techniques in the laser communication terminal(LCT) design are demonstrated.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20113219110025)
文摘CubeSats have evolved from purely educational tools to a standard platform for technology demonstration,scientific instrumentation and application in less than a decade.They open the door to new challenges and interplanetary missions which lead to the direct realization of autonomous orbit determination(AOD)which has been investigated before with different integrated sensors combined with various filters.Mostly these studies were carried out for larger satellites with more accurate sensors.Magnetometer and sun sensor combined with extended Kalman filter(EKF)are chosen to complete AOD task considering their light weight.For the purpose of AOD and the computational cost requirements imposed on CubeSats,it is important to develop and apply low cost on-board models.In this perspective,a magnetic model based on a table look up is proposed to generate the reference magnetic field with a low computational burden.In current article the simulations through Matlab and Satellites Tool Kit(STK)especially focus on the accuracy of the AOD system provided by this model.For analysis three EKFs are carried out with different calculation models and data types.The system based on the proposed model is fully autonomous,low-cost and has moderate-accuracy required by most CubeSats missions.The AOD system can be applied as main or backup system depending on the space missions′demands.
文摘As the role of missions and experiments carried out in outer space becomes more and more essential in our understanding of many earthly problems,such as resource management,environmental problems,and disaster management,as well as space science questions,thanks to their lower cost and faster development process CubeSats can benefit humanity and therefore,young scientists and engineers have been motivated to research and develop new CubeSat missions.Not very long after their inception,CubeSats have evolved to become accepted platforms for scientific and commercial applications.The last couple of years showed that they are a feasible tool for conducting scientific experiments,not only in the Earth orbit but also in the interplanetary space.For many countries,a CubeSat mission could prompt the community and young teams around the world to build the national capacity to launch and operate national space missions.This paper presents an overview of the key scientific and engineering gateways opened up to the younger scientific community by the advent and adaptation of new technology into CubeSat missions.The role of cooperation and the opportunities for capacity-building and education are also explored.Thus,the present article also aims to provide useful recommendations to scientists,early-career researchers,engineers,students,and anyone who intends to explore the potential and opportunities offered by CubeSats and CubeSats-based missions.
基金This work was supported by the Brazilian Space Agencythe National Council for Scientific and Technological Developmentthe Coordination for the Improvement of Higher Education Personnel.
文摘The FloripaSat-I project consists of an initiative from the Federal University of Santa Catarina(UFSC),in Brazil,to train students to design,test and integrate innovative space systems.The group just developed its first open-source CubeSat,the FloripaSat-I,which aims to empower students to develop space systems through a practical approach,where they have full control of the design and test of a real spacecraft.The project has already gone through all the stages of a CubeSat mission prior to the launching and operation stages.A prototype of the satellite,as well the engineering models 1 and 2(EM-I and EM-II)were built.The expertise provided by the engineering models allows the development of a functional flight model(FM).This paper presents the validation and qualification tests that pass various FloripaSat-I models,from the engineering model to the flight model.All stages of the project are described,the tests performed in each phase,as well as the lessons learned.Thus,this paper serves as a guidance for other university teams that want to test their own CubeSats,as well as teams that want to use the open-source hardware and software left as heritage by this project.
基金supported by HKU-RMGS Funds (207300301 and 207301033principal investigator: Q.A.P.)+1 种基金The research of P.S.P. is partially supported by a General Research Fund (GRF) grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (HKU Project 17304920principal investigator: S. C. Y. Ng).
文摘The observation of the low-energyγ-ray(0.1 to 30 MeV)sky has been significantly limited since the COMPTEL instrument aboard the Compton Gamma Ray Observatory(CGRO)satellite was decommissioned in 2000.The exploration ofγ-ray photons within this energy band,often referred to as the MeV gap,is crucial to address numerous unresolved mysteries in high-energy and multi-messenger astrophysics.Although several large MeVγ-ray missions have been proposed(e.g.,e-ASTROGAM,AMEGO,and COSI),most of these are in the planning phase,with launches not expected until the next decade,at the earliest.Recently,there has been a surge in proposed CubeSat missions as cost-effective and rapidly implementable pathfinder alternatives.An MeV CubeSat dedicated toγ-ray astronomy could serve as a valuable demonstrator for large-scale future MeV payloads.This paper proposes aγ-ray payload design with a silicon-based tracker and a cesium iodide-based calorimeter.We report the results of a simulation study to assess the performance of this payload concept and compare the results with those of previousγ-ray instruments.As part of the performance assessment and comparison,we show that with our proposed payload design,a sensitivity better than IBIS can be achieved for energies between 0.1 and 10 MeV,and for energies up to around 1 MeV,the achieved sensitivity is comparable to COMPTEL,therefore opening up a window toward cost-effective observational astronomy with comparable performance to past missions.
文摘Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse and predict relevant fluid dynamics phenomena within the thrust chamber of small-scale HREs.This work applies such techniques to investigate two unexpected behaviours observed in a 10 N-class hydrogen peroxide-based hybrid thruster:an uneven regression rate during High-Density Polyethylene(HDPE)and Acrylonitrile Butadiene Styrene(ABS)fuel tests,and non-negligible axial consumption in the ABS test case.The present study seeks to identify their fluid-dynamic origins by analysing key aspects of the thruster’s internal ballistics.The impact of recirculation zones and mixing on regression rates is quantified,as is the effect of grain heating on performance.Although already known in the present scientific literature,these phenomena prove to become particularly relevant for small-scale engines.Furthermore,the study demonstrates how appropriate numerical tools can replicate experimental findings,helping to foresee and mitigate undesirable behaviours in the design phases of future HRE propulsion systems.CFD results match the final HDPE grain geometry,reproducing the uneven port diameters with a maximum error below 9%.For ABS,axial regression is accurately captured,confirming the model’s reliability.Furthermore,average regression rates differ by only 1.60%and 1.20%for HDPE and ABS,respectively,while mass consumption is reproduced within 1.70%for HDPE and 3.01%for ABS.Overall,the results of the work demonstrate the reliability of the numerical approach adopted.This enriches the analysis capabilities devoted to 10 N-class engines,provides an additional tool for simulating the internal ballistics of small-scale hybrid thrusters,and integrates the existing literature with new insights into their fluid dynamics.
文摘“赫拉”(Hera)任务是由欧空局(ESA)主导并与美国国家航空航天局(NASA)合作开展的行星防御任务之一,通过对“双小行星重定向测试”(Double Asteroid Redirection Test,DART)任务撞击的“迪蒂莫斯”(Didymos)双星小行星系统开展近距离探测、物理特性表征及精确定轨等工作,从而实现撞击后小行星偏转评估、撞击坑产生和演化评估、撞击过程能量传递效率的评估,以此验证撞击防御的有效性并为后续合理有效的撞击防御方案设计提供重要的数据支撑。此外,任务通过撞击翻出的小行星表层以下物质的探测进一步研究太阳系早期小行星形成过程等科学问题。本文概述“赫拉”探测任务探测器设计、载荷配置、立方星设计、任务过程等工程实施特点,针对未来中国小行星防御技术的发展和规划提出思考和建议。