In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion metho...In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.展开更多
采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fen...采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE具有较好的去除效果:在初始pH=3,温度50℃,H_2O_2浓度30 mmol·L-1和Fe3O4/CeO_2投加量0.5 mg·L-1时,TCE去除率高达97.29%.同时实验结果表明pH在2~7范围内对TCE均有降解效果,所以相对于传统Fenton体系,该体系拥有更宽pH应用范围.目标污染物的降解符合一级动力学,反应活化能为30.77 k J·mol-1,表明反应易于进行.展开更多
The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition beha...The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition behavior and SO2 poisoning over V2 O5-MoO3/TiO2 catalysts modified with CeO2 and SiO2 were investigated.By the means of characterization analysis,it was found that the addition of SiO2 into VMo/Ti-Ce had an impact on the interaction existed between catalyst surface atoms and NH4 HSO4.Temperatureprogrammed methods and in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments indicated that the doping of SiO2 promoted the decomposition of deposited NH4 HSO4 on VMo/Ti-Ce catalyst surface by reducing the thermal stability of NH4 HSO4 and enhancing the NH4 HSO4 reactivity with NO in low temperature.And this improvement may be the reason for the better catalytic activity than VMo/Ti-Ce in the case of NH4 HSO4 deposition.Accompanied with cerium sulfate species generated over catalyst surface,the conversion of SO2 to SO3 was inhibited in SiCe mixed catalyst.The addition of SiO2 could promote the decomposition of cerium sulfate,which may be a potential strategy to enhance the resistance of SO2 poisoning over CeO2-modifed catalysts.展开更多
In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and F...In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and FT-IR spectrum.The pseudo-second-order(PSO) kinetic can describe well the adsorption of Acid black 210(AB210) onto the as-obtained MC Fe/Ce of which the adsorption isotherm fits the Langmuir adsorption model better than Freundlich adsorption model.Furthermore,the maximum monolayer adsorption capacity of MC Fe/Ce is about 93 mg/g,which is 6 times more than that of commercial CeO2 for AB210.Moreover,the removal rate of the adsorbates for AB210 is 82.3% after first adsorption and still about 70% the fourth forth adsorption experiments within 120 min,which demonstrates that the obtained MC Fe/Ce has outstanding adsorption capacity and good stability.Additionally,the composite can be easily separated from aqueous solution in a few seconds with an external magnetic field due to its magnetic property,which is vital and has potential for its practical applications.展开更多
文摘In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.
文摘采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE具有较好的去除效果:在初始pH=3,温度50℃,H_2O_2浓度30 mmol·L-1和Fe3O4/CeO_2投加量0.5 mg·L-1时,TCE去除率高达97.29%.同时实验结果表明pH在2~7范围内对TCE均有降解效果,所以相对于传统Fenton体系,该体系拥有更宽pH应用范围.目标污染物的降解符合一级动力学,反应活化能为30.77 k J·mol-1,表明反应易于进行.
基金supported by the National Natural Science Foundation of China(No.51576039)
文摘The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition behavior and SO2 poisoning over V2 O5-MoO3/TiO2 catalysts modified with CeO2 and SiO2 were investigated.By the means of characterization analysis,it was found that the addition of SiO2 into VMo/Ti-Ce had an impact on the interaction existed between catalyst surface atoms and NH4 HSO4.Temperatureprogrammed methods and in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments indicated that the doping of SiO2 promoted the decomposition of deposited NH4 HSO4 on VMo/Ti-Ce catalyst surface by reducing the thermal stability of NH4 HSO4 and enhancing the NH4 HSO4 reactivity with NO in low temperature.And this improvement may be the reason for the better catalytic activity than VMo/Ti-Ce in the case of NH4 HSO4 deposition.Accompanied with cerium sulfate species generated over catalyst surface,the conversion of SO2 to SO3 was inhibited in SiCe mixed catalyst.The addition of SiO2 could promote the decomposition of cerium sulfate,which may be a potential strategy to enhance the resistance of SO2 poisoning over CeO2-modifed catalysts.
基金Project supported by the Capacity Building Program of Shanghai Local Universities(12160503600)
文摘In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and FT-IR spectrum.The pseudo-second-order(PSO) kinetic can describe well the adsorption of Acid black 210(AB210) onto the as-obtained MC Fe/Ce of which the adsorption isotherm fits the Langmuir adsorption model better than Freundlich adsorption model.Furthermore,the maximum monolayer adsorption capacity of MC Fe/Ce is about 93 mg/g,which is 6 times more than that of commercial CeO2 for AB210.Moreover,the removal rate of the adsorbates for AB210 is 82.3% after first adsorption and still about 70% the fourth forth adsorption experiments within 120 min,which demonstrates that the obtained MC Fe/Ce has outstanding adsorption capacity and good stability.Additionally,the composite can be easily separated from aqueous solution in a few seconds with an external magnetic field due to its magnetic property,which is vital and has potential for its practical applications.