In this work,we developed plasmonic photocatalyst composed of Cu Pd alloy nanoparticles supported on Ti N,the optimized Cu_(3)Pd_(2)/Ti N catalyst shows excellent conversion(>96%)and selectivity(>99%)for Heck re...In this work,we developed plasmonic photocatalyst composed of Cu Pd alloy nanoparticles supported on Ti N,the optimized Cu_(3)Pd_(2)/Ti N catalyst shows excellent conversion(>96%)and selectivity(>99%)for Heck reaction at 50℃ under visible light irradiation.By in-situ spectroscopic investigations,we find that visible light excitation could achieve stable metallic Cu species on the surface of Cu Pd alloy nanoparticles,thereby eliminating the inevitable surface oxides of Cu based catalyst.The in-situ formed metallic Cu species under irradiation take advantage of the strong interactions of Cu with visible light,and manifest in the localized surface plasmon resonances(LSPR)photoexcitation.Visible light excitation could further promote the charge transfer between catalytic Pd component and the support Ti N,resulting in electron-rich Pd sites on Cu Pd/Ti N.Moreover,light excitation on Cu Pd/Ti N generates strong chemisorption of iodobenzene and styrene,favoring the activation of reactants for Heck reaction.DFT calculations suggest that electron-rich Cu Pd sites ideally lower the activation energy barrier for the coupling reaction.This work provides valuable insights for mechanistic understanding of plasmonic photocatalysis.展开更多
Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting fo...Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting for H 2 generation,but it is still restricted by the kinetically sluggish OER.Due to the lower standard oxidation potential of−0.33 V,replacing the OER with anodic hydrazine oxidation reaction(HzOR)is an effective way to extensively reduce the use of electricity in water electrolysis.Through alloying,the semiconductor and adsorption characteristics of Cu,interlaced by Pd 2+solution on the Pd surface by pulsed laser ablation(PLA)in methanol,are selectively altered to maximize cathodic HER and anodic HzOR performance.The optimal Cu1Pd3/C ratio demonstrates outstanding HER performance with a low overpotential of 0.315 V at 10 mA cm^(−2),as well as an ultralow overpotential of 0.560 V for HzOR in 0.5 M N_(2) H_(4)/1.0 M KOH.Furthermore,the constructed HzOR-assisted electrolyzer cell with Cu1Pd3/C||Cu1Pd3/C as anode and cathode exhibits a cell voltage of 0.505 V at 10 mA cm^(−2) with exceptional en-durance over 5 h.The current study advances competent CuPd alloys as multifunctional electrocatalysts for H 2 fuel production using a HzOR-assisted energy-efficient electrolyzer.展开更多
Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivi...Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivity.However,the synthesis of ultrafine nanoalloys and tuning their surface composition remain challenging.In this report,ultrafine CuPd nanoalloys with the particle size of ca.2 nm are synthesized based on the galvanic replacement reaction between presynthesized Cu nanoparticles and Pd2+precursors,and the tuning of their surface compositions is also achieved by changing the atom ratios of Cu/Pd.For the electrocatalytic reduction of CO2,Cu5Pd5 nanoalloys show the CO Faradaic efficiency(FE)of 88%at−0.87 V,and the corresponding mass activity reaches 56 A/g that is much higher than those of Cu8Pd2 nanoalloys,Cu3Pd7 nanoalloys and most of previously reported catalysts.Density functional theory uncovers that with the increase of Pd on the surface of the ultrafine CuPd nanoalloys,the adsorbed energy of both of intermediate COOH*and CO*to the Pd sites is strengthened.The Cu5Pd5 nanoalloys with the optimal surface composition better balance the adsorption of COOH*and desorption of CO*,achieving the highest selectivity and activity.The difficult liberation of absorbed CO*on the surface of Cu3Pd7 nanoalloys provides carbon source to favor the production of ethylene,endowing the Cu3Pd7 nanoalloys with the highest selectivity for ethylene among these ultrafine CuPd nanoalloys.展开更多
Bimetallic catalysts can improve CO2 reduction efficiency via the combined properties of two metals.CuPd shows enhanced CO2 reduction activity compared to copper alone.Using differential electrochemical mass spectrome...Bimetallic catalysts can improve CO2 reduction efficiency via the combined properties of two metals.CuPd shows enhanced CO2 reduction activity compared to copper alone.Using differential electrochemical mass spectrometry(DEMS)and electrochemical infrared(IR)spectroscopy,volatile products and adsorbed intermediates were measured during CO2 and CO reduction on Cu and CuPd.The IR band corresponding to adsorbed CO appears 300 mV more positive on CuPd than that on Cu,indicating acceleration of CO2 reduction to CO.Electrochemical IR spectroscopy measurements in CO-saturated solutions reveal similar potentials for CO adsorption and CO3^2-desorption on CuPd and Cu,indicating that CO adsorption is controlled by desorption of CO3^2-.DEMS measurements carried out during CO reduction at both electrodes showed that the onset potential for reduction of CO to CH4 and CH3OH on CuPd is about 200 mV more positive than that on Cu.We attribute these improvements to interaction of Cu and Pd,which shifts the d-band center of the Cu sites.展开更多
Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conven...Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conventional treatments,the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione(GSH).In this study,we aim to address this dual challenge by delving into the role of copper valence states in CDT.Leveraging the unique attributes of copper-based nanoparticles,especially zero-valent copper nanoparticles(CuPd NPs),we aim to enhance the therapeutic potential of CDT.Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles(Ox-CuPd NPs)by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like(POD-like)activity and Cu+release.Notably,zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts,thereby intensifying CDT and inducing ferroptosis,ultimately resulting in high-efficiency tumor growth inhibition.These findings reveal the impact of valences on CDT,providing novel insights for the optimization and design of CDT agents.展开更多
基金supported by Shanghai Pujiang Program(No.21PJ1400400)the Research Start-up Fund at Donghua University+2 种基金the Foundation of State Key Laboratory of Coal Combustion(No.FSKLCCA2309)the National Natural Science Foundation of China(No.22302109)the Australian Research Council(No.DP230102740)。
文摘In this work,we developed plasmonic photocatalyst composed of Cu Pd alloy nanoparticles supported on Ti N,the optimized Cu_(3)Pd_(2)/Ti N catalyst shows excellent conversion(>96%)and selectivity(>99%)for Heck reaction at 50℃ under visible light irradiation.By in-situ spectroscopic investigations,we find that visible light excitation could achieve stable metallic Cu species on the surface of Cu Pd alloy nanoparticles,thereby eliminating the inevitable surface oxides of Cu based catalyst.The in-situ formed metallic Cu species under irradiation take advantage of the strong interactions of Cu with visible light,and manifest in the localized surface plasmon resonances(LSPR)photoexcitation.Visible light excitation could further promote the charge transfer between catalytic Pd component and the support Ti N,resulting in electron-rich Pd sites on Cu Pd/Ti N.Moreover,light excitation on Cu Pd/Ti N generates strong chemisorption of iodobenzene and styrene,favoring the activation of reactants for Heck reaction.DFT calculations suggest that electron-rich Cu Pd sites ideally lower the activation energy barrier for the coupling reaction.This work provides valuable insights for mechanistic understanding of plasmonic photocatalysis.
基金supported by Korea Basic Science Institute (National research Facilities and Equipment Center)grant funded by the Ministry of Education. (Nos.2019R1A6C1010042,2021R1A6C103A427)support from National Research Foundation of Korea (NRF), (Nos.2022R1A2C2010686,2022R1A4A3033528,2020R1I1A1A01065748,2021R1I1A1A01060380).
文摘Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting for H 2 generation,but it is still restricted by the kinetically sluggish OER.Due to the lower standard oxidation potential of−0.33 V,replacing the OER with anodic hydrazine oxidation reaction(HzOR)is an effective way to extensively reduce the use of electricity in water electrolysis.Through alloying,the semiconductor and adsorption characteristics of Cu,interlaced by Pd 2+solution on the Pd surface by pulsed laser ablation(PLA)in methanol,are selectively altered to maximize cathodic HER and anodic HzOR performance.The optimal Cu1Pd3/C ratio demonstrates outstanding HER performance with a low overpotential of 0.315 V at 10 mA cm^(−2),as well as an ultralow overpotential of 0.560 V for HzOR in 0.5 M N_(2) H_(4)/1.0 M KOH.Furthermore,the constructed HzOR-assisted electrolyzer cell with Cu1Pd3/C||Cu1Pd3/C as anode and cathode exhibits a cell voltage of 0.505 V at 10 mA cm^(−2) with exceptional en-durance over 5 h.The current study advances competent CuPd alloys as multifunctional electrocatalysts for H 2 fuel production using a HzOR-assisted energy-efficient electrolyzer.
基金National Natural Science Foundation of China,Grant/Award Numbers:21573240,21706265,21922813The would like to acknowledge the support provided by the National Natural Science Foundation of China(Grant no.:21573240 and 21706265)+2 种基金the Center for Mesoscience,Institute of Process Engineering,Chinese Academy of Sciences(MPCS-2017-A-02)State Key Laboratory of Multiphase Complex Systems(MPCS-2019-A-09)National Science Fund for Excellent Young Scholars(21922813).
文摘Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivity.However,the synthesis of ultrafine nanoalloys and tuning their surface composition remain challenging.In this report,ultrafine CuPd nanoalloys with the particle size of ca.2 nm are synthesized based on the galvanic replacement reaction between presynthesized Cu nanoparticles and Pd2+precursors,and the tuning of their surface compositions is also achieved by changing the atom ratios of Cu/Pd.For the electrocatalytic reduction of CO2,Cu5Pd5 nanoalloys show the CO Faradaic efficiency(FE)of 88%at−0.87 V,and the corresponding mass activity reaches 56 A/g that is much higher than those of Cu8Pd2 nanoalloys,Cu3Pd7 nanoalloys and most of previously reported catalysts.Density functional theory uncovers that with the increase of Pd on the surface of the ultrafine CuPd nanoalloys,the adsorbed energy of both of intermediate COOH*and CO*to the Pd sites is strengthened.The Cu5Pd5 nanoalloys with the optimal surface composition better balance the adsorption of COOH*and desorption of CO*,achieving the highest selectivity and activity.The difficult liberation of absorbed CO*on the surface of Cu3Pd7 nanoalloys provides carbon source to favor the production of ethylene,endowing the Cu3Pd7 nanoalloys with the highest selectivity for ethylene among these ultrafine CuPd nanoalloys.
基金supported by the National Natural Science Foundation of China(No.91545124 and No.21750110437)supported by the Chinese Academy of Sciences President’s International Fellowship Initiative(No.2017PM0049)。
文摘Bimetallic catalysts can improve CO2 reduction efficiency via the combined properties of two metals.CuPd shows enhanced CO2 reduction activity compared to copper alone.Using differential electrochemical mass spectrometry(DEMS)and electrochemical infrared(IR)spectroscopy,volatile products and adsorbed intermediates were measured during CO2 and CO reduction on Cu and CuPd.The IR band corresponding to adsorbed CO appears 300 mV more positive on CuPd than that on Cu,indicating acceleration of CO2 reduction to CO.Electrochemical IR spectroscopy measurements in CO-saturated solutions reveal similar potentials for CO adsorption and CO3^2-desorption on CuPd and Cu,indicating that CO adsorption is controlled by desorption of CO3^2-.DEMS measurements carried out during CO reduction at both electrodes showed that the onset potential for reduction of CO to CH4 and CH3OH on CuPd is about 200 mV more positive than that on Cu.We attribute these improvements to interaction of Cu and Pd,which shifts the d-band center of the Cu sites.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3804500)the National Natural Science Foundation of China(Nos.52102354,52102180,52202353,and 52372273)the Science and Technology Development Planning Project of Jilin Province(Nos.20220101070JC,20220508089RC,and 20210402046GH).
文摘Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conventional treatments,the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione(GSH).In this study,we aim to address this dual challenge by delving into the role of copper valence states in CDT.Leveraging the unique attributes of copper-based nanoparticles,especially zero-valent copper nanoparticles(CuPd NPs),we aim to enhance the therapeutic potential of CDT.Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles(Ox-CuPd NPs)by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like(POD-like)activity and Cu+release.Notably,zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts,thereby intensifying CDT and inducing ferroptosis,ultimately resulting in high-efficiency tumor growth inhibition.These findings reveal the impact of valences on CDT,providing novel insights for the optimization and design of CDT agents.