Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation...The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.展开更多
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni...With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d...Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.展开更多
The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic syste...The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic system.Here,Zn which can be recycled with solar energy-induced approach was chosen as the reductant and Co as catalyst to achieve robust hydrothermalCO_(2)methanation.Nanosheets of honeycomb ZnO were grown in situ on the Co surface,resulting in a new motif(Co@ZnO catalyst)that inhibits Co deacti-vation through ZnO-assistedCoOx reduction.The stabilized Co and interaction between Co and ZnO functioned collaboratively toward the full conversion ofCO_(2)–CH_(4).In situ hydrothermal infrared spectros-copy confirmed the formation of formic acid as an intermediate,thereby avoiding CO formation and unwanted side reaction pathways.This study presents a straightforward one-step process for both highly efficientCO_(2)conversion and catalyst synthesis,paving the way for solar-drivenCO_(2)methanation.展开更多
Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance...Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs.展开更多
Formamide condensation with Ni can generate the N–C structure,widely recognized as an efficient catalyst for electrocatalytic CO_(2) reduction reaction(CO_(2)RR).To improve the utilization efficiency of Ni atoms,we i...Formamide condensation with Ni can generate the N–C structure,widely recognized as an efficient catalyst for electrocatalytic CO_(2) reduction reaction(CO_(2)RR).To improve the utilization efficiency of Ni atoms,we introduced metal oxides as substrates to modulate the growth of a formamide-Ni(FA-Ni)condensate.FA-Ni@TiO_(2) demonstrated 2.8 times higher partial CO current density and Ni turnover frequency than FA-Ni,which were also higher than those of other FA-Ni@metal oxides,including ZrO_(2),Al_(2)O_(3),Fe_(2)O_(3),and ZnO.The improved performance of CO_(2)RR can be attributed to the Ni content exposed on FA-Ni@TiO_(2) being twice that of the raw FA-Ni condensate.The Fourier transform infrared results suggested that formamide was adsorbed on TiO_(2) via the-CHO group,exposing-NH_(2) for potential interaction with Ni.As a result,Ni atoms were predispersed on the TiO_(2) surface.By contrast,the dispersion of Ni atoms was not enhanced by other metal oxides,such as Al_(2)O_(3),Fe_(2)O_(3),and ZnO,owing to the robust acidity of their surface sites.These metal oxides adsorbed formamide via-NH_(2),leading to the absence of extra-NH_(2) available for binding to Ni atoms.This study provides new insights into the development of appropriate substrates for single-atom catalysts.展开更多
The use of fossil fuels significantly contributes to excess CO_(2) emissions.Catalytic hydrogenation of CO_(2) to dimethyl ether(DME)is an effective method for CO_(2) recycling,offering both environmental and economic...The use of fossil fuels significantly contributes to excess CO_(2) emissions.Catalytic hydrogenation of CO_(2) to dimethyl ether(DME)is an effective method for CO_(2) recycling,offering both environmental and economic benefits.Zeolites,known for their efficiency as solid catalysts,are widely utilized in the chemical industries.Bifunctional catalysts based on zeolites have gained attention for their applications in CO_(2) hydrogenation to DME.This review discusses key factors affecting the catalytic performance of zeolites,including topologies,Si/Al ratio,crystal size,and the proximity of metallic species to the zeolite catalysts.Although bifunctional catalytic systems enhance the conversion of CO_(2) to DME,they also lead to high CO selectivity at elevated temperatures,which can limit both DME yield and selectivity.We present recent advancements in the development of bifunctional catalysts for the direct hydrogenation of CO_(2) to DME,providing insights for designing optimized catalysts for tandem reaction systems.展开更多
The role of catalysts in enhancing the hydrogen storage kinetics of the Mg/MgH_(2)system is pivotal.However,the exploration of efficient catalysts and the underlying principles of their design remain both a prominent ...The role of catalysts in enhancing the hydrogen storage kinetics of the Mg/MgH_(2)system is pivotal.However,the exploration of efficient catalysts and the underlying principles of their design remain both a prominent focus and a significant challenge in current research.In this study,we present a bimetallic oxide of Bi_(2)Ti_(2)O_(7)hollow sphere as a highly effective catalyst for MgH_(2).As a result,the Bi_(2)Ti_(2)O_(7)-catalyzed Mg/MgH_(2)system lowers the hydrogen desorption initiation temperature to 194.3℃,reduces the peak desorption temperature to 245.6℃,decreases the dehydrogenation activation energy to 82.14 kJ·mol^(−1),and can absorb 5.4 wt.%of hydrogen within 60 s at 200℃,demonstrating outstanding hydrogen ab/desorption kinetics,compared to pure MgH_(2).Additionally,it can maintain a high hydrogen capacity of 5.2 wt.%,even after 50 dehydrogenation cycles,showing good cycle stability.The characterization results show that the high-valent Bi and Ti in Bi_(2)Ti_(2)O_(7)are reduced to their low-valent or even zero-valent metallic states during the dehydrogenation and hydrogenation process,thus establishing an in-situ multivalent and multi-element catalytic environment.Density functional theory calculations further reveal that the synergistic effects between Bi and Ti in the Bi-Ti mixed oxide facilitate the cleavage of Mg-H bonds and lower the kinetic barrier for the dissociation of hydrogen molecules,thereby substantially enhancing the kinetics of the Mg/MgH_(2)system.This study presents a strategic method for developing efficient catalysts for hydrogen storage materials by harnessing the synergistic effects of metal elements.展开更多
Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required...Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required for NRR by the CNM methods and those observed experimentally,as the CNM method neglects the charge effect from the electrode potential.To address this issue,we employed the constant electrode potential(CEP)method to screen atomic transition metal-N-graphene(M_(1)/N-graphene)as NRR electrocatalysts and systematically investigated the underlying catalytic mechanism.Among eight types of M_(1)/N-graphene(M_(1)=Mo,W,Fe,Re,Ni,Co,V,Cr),W_(1)/N-graphene emerges as the most promising NRR electrocatalyst with a limiting potential as low as−0.13 V.Additionally,the W_(1)/N-graphene system consistently maintains a positive charge during the reaction due to its Fermi level being higher than that of the electrode.These results better match with the actual circumstances compared to those calculated by conventional CNM method.Thus,our work not only develops a promising electrocatalyst for NRR but also deepens the understanding of the intrinsic electrocatalytic mechanism.展开更多
Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers ...Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers several advantages over multi-step cascade processes,including reduced costs and enhanced CO_(2)utilization.However,the integrated CO_(2)capture and electrochemical reduction(CCER)process encounters several challenges,including the low CO_(2)adsorption performance of the gas diffusion electrode(GDE)and catalyst,as well as the poor activity and selectivity of the catalyst for the electrochemical reduction of CO_(2).This review aims to systematically summarize the fundamentals of the CCER process.Based on an in-depth understanding of the CO_(2)mass transfer,adsorption,and electrochemical reduction processes,GDE design strategies based on the modulation of wettability and structure are discussed to enhance the CO_(2)capture capability at the GDE level.At the catalyst level,catalyst design strategies based on the introduction of CO_(2)capture sites and the construction of CO_(2)mass transfer channels were analyzed,and catalyst design strategies for enhanced CO_(2)capture were proposed.This review summarizes the most common catalysts for CO_(2)electrochemical reduction,such as Ni-based,Bi-based,and Cubased catalysts,and analyzes their design strategies based on reaction pathways for generating specific products.Finally,the problems and challenges of the CCER process are summarized and proposed,which provide ideas for the further application of this technology in the future.展开更多
Metallic single-atom catalysts(SACs)have demonstrated high activity and potential in enhancing the hydrogen storage properties of MgH_(2).However,previous reports primarily focus on supported SACs,which often suffer f...Metallic single-atom catalysts(SACs)have demonstrated high activity and potential in enhancing the hydrogen storage properties of MgH_(2).However,previous reports primarily focus on supported SACs,which often suffer from insufficient co ntact between single-atom active sites and hydrogen storage materials.In this study,the precursor Mo(CO)_(6)is uniformly dispersed on the surface of MgH_(2)via impregnation adsorption,leading to the formation of alloy-type Mo single atoms after hydrogenation/dehydrogenation activation.This alloy structure enables zero-distance contact between catalytic sites and the hydrogen storage material,facilitating electron exchange and hydrogen transfer between the Mo sites and MgH_(2).The MgH_(2)loaded with Mo single atoms(Mo_(1)-MgH_(2))exhibits excellent hydrogen absorption and desorption properties,with the initial hydrogen release temperature lowered from 323 to 218℃.At 250℃,Mo_(1)-MgH_(2)absorbs over 6.77 wt% of hydrogen within 1 min and releases over 5.85 wt% within 4 h.During 10 cycles of hydrogenation and dehydrogenation reactions,Mo_(1)-MgH_(2)maintains nearly 100% capacity and shows stable kinetics.This work provides new insights into the design and fabrication of catalysts for hydrogen storage materials.展开更多
Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scann...Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scanning electron microscope),and XPS(X-ray photoelectron spectroscopy)and the purification effect on NO_(x) and PM was measured through simulated emission experiments.The results indicate that CuCrO_(2) catalyst has good catalytic activity,the maximum NO_(x) conversion rate can be up to 28.15%,and the ignition temperature of PM can be reduced to 285℃.When the molecular ratio of Cr:Fe=9:1,the catalyst can achieve better catalytic effect,the maximum NO_(x) conversion rate will be up to 30.25%and the PM ignition temperature can be reduced to 280℃.In addition,the catalytic activity of catalyst supported on different carriers was also studied.The results show that catalyst on SiC foam ceramic carrier has better catalytic activity than that on cordierite honeycomb ceramic carrier.The maximum NO_(x) conversion of CuCrO_(2) and CuCr_(0.9)Fe_(0.1)O_(2) can be increased by 0.72%and 1.33%respectively,and the PM ignition temperature can be further reduced by 15 and 5℃respectively.展开更多
Industrial decarbonization is critical for achieving net-zero goals.The carbon dioxide electrochemical reduction reaction(CO_(2)RR)is a promising approach for converting CO_(2)into high-value chemicals,offering the po...Industrial decarbonization is critical for achieving net-zero goals.The carbon dioxide electrochemical reduction reaction(CO_(2)RR)is a promising approach for converting CO_(2)into high-value chemicals,offering the potential for decarbonizing industrial processes toward a sustainable,carbon-neutral future.However,developing CO_(2)RR catalysts with high selectivity and activity remains a challenge due to the complexity of finding such catalysts and the inefficiency of traditional computational or experimental approaches.Here,we present a methodology integrating density functional theory(DFT)calculations,deep learning models,and an active learning strategy to rapidly screen high-performance catalysts.The proposed methodology is then demonstrated on graphene-based single-atom catalysts for selective CO_(2)electroreduction to methanol.First,we conduct systematic binding energy calculations for 3045 single-atom catalysts to identify thermodynamically stable catalysts as the design space.We then use a graph neural network,fine-tuned with a specialized adsorption energy database,to predict the relative activity and selectivity of the candidate catalysts.An autonomous active learning framework is used to facilitate the exploration of designs.After six learning cycles and 2180 adsorption calculations across 15 intermediates,we develop a surrogate model that identifies four novel catalysts on the Pareto front of activity and selectivity.Our work demonstrates the effectiveness of leveraging a domain foundation model with an active learning framework and holds potential to significantly accelerate the discovery of high-performance CO_(2)RR catalysts.展开更多
In this study,a novel Pt-loaded Cu Pc/g-C_(3)N_(4)(Pt Cu CN)composite was synthesized for the selective photocatalytic reduction of CO_(2)to CH_(4)under visible light.The Pt Cu CN catalyst achieved a CH_(4)yield of 3...In this study,a novel Pt-loaded Cu Pc/g-C_(3)N_(4)(Pt Cu CN)composite was synthesized for the selective photocatalytic reduction of CO_(2)to CH_(4)under visible light.The Pt Cu CN catalyst achieved a CH_(4)yield of 39.8μmol g^(-1)h^(-1),significantly outperforming bulk g-C_(3)N_(4)and Cu Pc alone by factors of 2.5 and 3.1,respectively,with a high selectivity of 90%.In comparison with other commonly studied photocatalysts,such as g-C_(3)N_(4)-based catalysts,the Pt Cu CN composite exhibited superior CH_(4)yield and product selectivity,demonstrating its potential as a more efficient photocatalyst for CO_(2)reduction.X-ray photoelectron spectroscopy(XPS),density functional theory(DFT)calculations,and in-situ infrared(IR)analysis revealed that the Pt^(0)species effectively lower the activation energy for CH_(4)formation,while Cu Pc extends the light absorption range and enhances charge separation.The combined effects of these components in a Z-scheme heterojunction provide new insights into designing highly selective CO_(2)-to-CH_(4)photocatalysts.This work demonstrates the potential of Pt Cu CN as a highly efficient and stable catalyst for CO_(2)reduction to CH_(4)under visible light.展开更多
Copper(Cu)is widely used in the electrochemical carbon dioxide reduction reaction(ECO_(2)RR)for efficient methane(CH_(4))product.However,the morphology and valence of Cu-based catalysts are usually unstable under reac...Copper(Cu)is widely used in the electrochemical carbon dioxide reduction reaction(ECO_(2)RR)for efficient methane(CH_(4))product.However,the morphology and valence of Cu-based catalysts are usually unstable under reaction conditions.In this work,we prepared Ce-doped MOF-199 precursor(Ce/HKUST-1)and further obtained nanoparticle electrocatalyst Ce/CuO_(x)-NPs by cyclic voltammetry(CV)pretreatment.The Faradic efficiency of methane(FE_(CH_(4)))maintains above 62%within a broad potential window of 350 mV and the maximum FE_(CH_(4))reaches 67.4%with a partial current density of 293 mA/cm^(2)at-1.6 V vs.a reversible hydrogen electrode.Catalyst characterization and theoretical calculations revealed that the unique electronic structure and large ionic radius of Cerium(Ce)not only promoted the generation of key intermediate*CO but also lowered energy barrier of the*CO to*CHO step.This study provides a novel and efficient catalyst for methane production in ECO_(2)RR and offers profound insights into constructing high performance Cu-based catalysts.展开更多
CO_(2) hydrogenation to CH3OH is of great significance for achieving carbon neutrality.Here,we show a urea-assisted grinding strategy for synthesizing Cu-Zn-Ce ternary catalysts(CZC-G)with optimized interfacial synerg...CO_(2) hydrogenation to CH3OH is of great significance for achieving carbon neutrality.Here,we show a urea-assisted grinding strategy for synthesizing Cu-Zn-Ce ternary catalysts(CZC-G)with optimized interfacial synergy,achieving superior performance in CO_(2) hydrogenation to methanol.The CZC-G catalyst demonstrated exceptional methanol selectivity(96.8%)and a space-time yield of 73.6 gMeOH·kgcat^(–1)·h^(–1) under optimized conditions.Long-term stability tests confirmed no obvious deactivation over 100 h of continuous operation.Structural and mechanistic analyses revealed that the urea-assisted grinding method promotes the formation of Cu/Zn-O_(v)-Ce ternary interfaces and inhibits the reduction of ZnO,enabling synergistic interactions for efficient CO_(2) activation and selective stabilization of formate intermediates(HCOO^(*)),which are critical for methanol synthesis.In-situ diffuse reflectance infrared Fourier transform spectra and X-ray absorption spectroscopy studies elucidated the reaction pathway dominated by the formate mechanism,while suppressing the reverse water-gas shift reaction.This work underscores the critical role of synthetic methodologies in engineering interfacial structures,offering a strategy for designing high-performance catalysts for sustainable CO_(2) resource utilization.展开更多
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
基金the Canadian NRCan OERD Energy Innovation Programthe Natural Sciences and Engineering Research Council of Canada,and the Carbon Solution Program for their financial support.
文摘The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.
基金supported by the Natural Science Foundation of Shanxi Province(202203021221155)the Foundation of National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal(J23-24-902)。
文摘With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
基金University Synergy Innovation Program of Anhui Province(GXXT-2022-083)Science and Technology Plan Project of Wuhu City,China(2023kx12)Anhui Provincial Department of Education New Era Education Project(2023xscx070)。
文摘Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.
基金the National Natural Science Foundation of China(No.22108171)the Shanghai Key Laboratory of Hydrogen Science&Center of Hydrogen Science,Shanghai Jiao Tong University,China.
文摘The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic system.Here,Zn which can be recycled with solar energy-induced approach was chosen as the reductant and Co as catalyst to achieve robust hydrothermalCO_(2)methanation.Nanosheets of honeycomb ZnO were grown in situ on the Co surface,resulting in a new motif(Co@ZnO catalyst)that inhibits Co deacti-vation through ZnO-assistedCoOx reduction.The stabilized Co and interaction between Co and ZnO functioned collaboratively toward the full conversion ofCO_(2)–CH_(4).In situ hydrothermal infrared spectros-copy confirmed the formation of formic acid as an intermediate,thereby avoiding CO formation and unwanted side reaction pathways.This study presents a straightforward one-step process for both highly efficientCO_(2)conversion and catalyst synthesis,paving the way for solar-drivenCO_(2)methanation.
文摘Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs.
基金supported by the National Natural Science Foundation of China(No.42077299)the Innovation Program of Chinese Academy of Agricultural Sciences(No.Y2024QC29).
文摘Formamide condensation with Ni can generate the N–C structure,widely recognized as an efficient catalyst for electrocatalytic CO_(2) reduction reaction(CO_(2)RR).To improve the utilization efficiency of Ni atoms,we introduced metal oxides as substrates to modulate the growth of a formamide-Ni(FA-Ni)condensate.FA-Ni@TiO_(2) demonstrated 2.8 times higher partial CO current density and Ni turnover frequency than FA-Ni,which were also higher than those of other FA-Ni@metal oxides,including ZrO_(2),Al_(2)O_(3),Fe_(2)O_(3),and ZnO.The improved performance of CO_(2)RR can be attributed to the Ni content exposed on FA-Ni@TiO_(2) being twice that of the raw FA-Ni condensate.The Fourier transform infrared results suggested that formamide was adsorbed on TiO_(2) via the-CHO group,exposing-NH_(2) for potential interaction with Ni.As a result,Ni atoms were predispersed on the TiO_(2) surface.By contrast,the dispersion of Ni atoms was not enhanced by other metal oxides,such as Al_(2)O_(3),Fe_(2)O_(3),and ZnO,owing to the robust acidity of their surface sites.These metal oxides adsorbed formamide via-NH_(2),leading to the absence of extra-NH_(2) available for binding to Ni atoms.This study provides new insights into the development of appropriate substrates for single-atom catalysts.
基金the National Key Research and Development Program of China(2021YFA1500401)the National Natural Science Foundation of China(22288101)the‘111 Center’(B17020)for supporting this work.
文摘The use of fossil fuels significantly contributes to excess CO_(2) emissions.Catalytic hydrogenation of CO_(2) to dimethyl ether(DME)is an effective method for CO_(2) recycling,offering both environmental and economic benefits.Zeolites,known for their efficiency as solid catalysts,are widely utilized in the chemical industries.Bifunctional catalysts based on zeolites have gained attention for their applications in CO_(2) hydrogenation to DME.This review discusses key factors affecting the catalytic performance of zeolites,including topologies,Si/Al ratio,crystal size,and the proximity of metallic species to the zeolite catalysts.Although bifunctional catalytic systems enhance the conversion of CO_(2) to DME,they also lead to high CO selectivity at elevated temperatures,which can limit both DME yield and selectivity.We present recent advancements in the development of bifunctional catalysts for the direct hydrogenation of CO_(2) to DME,providing insights for designing optimized catalysts for tandem reaction systems.
基金supported by the National Key Research and Development Program of China(No.2024YFB4007204,2022YFB4004301)the National Natural Science Founda-tion of China(Grant Nos.52477220,52301287,22005353)+2 种基金the Two-chain Integration Key Project of Shaanxi Province(2021LLRH-09)the Key Research and Development Program of Shaanxi Province(No.2024CY2-GJHX-44,2024CY2-GJHX-53,2024GX-ZDCYL-04-06)the Key Industrial Chain Technology Research Program of Xi’an city(23LL-RHZDZX0017).
文摘The role of catalysts in enhancing the hydrogen storage kinetics of the Mg/MgH_(2)system is pivotal.However,the exploration of efficient catalysts and the underlying principles of their design remain both a prominent focus and a significant challenge in current research.In this study,we present a bimetallic oxide of Bi_(2)Ti_(2)O_(7)hollow sphere as a highly effective catalyst for MgH_(2).As a result,the Bi_(2)Ti_(2)O_(7)-catalyzed Mg/MgH_(2)system lowers the hydrogen desorption initiation temperature to 194.3℃,reduces the peak desorption temperature to 245.6℃,decreases the dehydrogenation activation energy to 82.14 kJ·mol^(−1),and can absorb 5.4 wt.%of hydrogen within 60 s at 200℃,demonstrating outstanding hydrogen ab/desorption kinetics,compared to pure MgH_(2).Additionally,it can maintain a high hydrogen capacity of 5.2 wt.%,even after 50 dehydrogenation cycles,showing good cycle stability.The characterization results show that the high-valent Bi and Ti in Bi_(2)Ti_(2)O_(7)are reduced to their low-valent or even zero-valent metallic states during the dehydrogenation and hydrogenation process,thus establishing an in-situ multivalent and multi-element catalytic environment.Density functional theory calculations further reveal that the synergistic effects between Bi and Ti in the Bi-Ti mixed oxide facilitate the cleavage of Mg-H bonds and lower the kinetic barrier for the dissociation of hydrogen molecules,thereby substantially enhancing the kinetics of the Mg/MgH_(2)system.This study presents a strategic method for developing efficient catalysts for hydrogen storage materials by harnessing the synergistic effects of metal elements.
基金Natural Science Foundation of Guangdong Province(No.2024A1515011094(C.Q Sun))National Natural Science Foundation of China(Nos.12304243(H.X.Fang),12150100(B.Wang))is gratefully acknowledged。
文摘Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required for NRR by the CNM methods and those observed experimentally,as the CNM method neglects the charge effect from the electrode potential.To address this issue,we employed the constant electrode potential(CEP)method to screen atomic transition metal-N-graphene(M_(1)/N-graphene)as NRR electrocatalysts and systematically investigated the underlying catalytic mechanism.Among eight types of M_(1)/N-graphene(M_(1)=Mo,W,Fe,Re,Ni,Co,V,Cr),W_(1)/N-graphene emerges as the most promising NRR electrocatalyst with a limiting potential as low as−0.13 V.Additionally,the W_(1)/N-graphene system consistently maintains a positive charge during the reaction due to its Fermi level being higher than that of the electrode.These results better match with the actual circumstances compared to those calculated by conventional CNM method.Thus,our work not only develops a promising electrocatalyst for NRR but also deepens the understanding of the intrinsic electrocatalytic mechanism.
基金supported by the National Natural Science Foundation of China(U23A20573,U23A20140)the Hebei Natural Science Foundation(B202420809,B2024208088)+2 种基金S&T Program of Hebei(242Q4301Z,22373709D)Project of Basic Research at Universities in Shijiazhuang(241790977A)Huang jin tai plan project of Hebei provincial department of education(HJZD202512)。
文摘Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers several advantages over multi-step cascade processes,including reduced costs and enhanced CO_(2)utilization.However,the integrated CO_(2)capture and electrochemical reduction(CCER)process encounters several challenges,including the low CO_(2)adsorption performance of the gas diffusion electrode(GDE)and catalyst,as well as the poor activity and selectivity of the catalyst for the electrochemical reduction of CO_(2).This review aims to systematically summarize the fundamentals of the CCER process.Based on an in-depth understanding of the CO_(2)mass transfer,adsorption,and electrochemical reduction processes,GDE design strategies based on the modulation of wettability and structure are discussed to enhance the CO_(2)capture capability at the GDE level.At the catalyst level,catalyst design strategies based on the introduction of CO_(2)capture sites and the construction of CO_(2)mass transfer channels were analyzed,and catalyst design strategies for enhanced CO_(2)capture were proposed.This review summarizes the most common catalysts for CO_(2)electrochemical reduction,such as Ni-based,Bi-based,and Cubased catalysts,and analyzes their design strategies based on reaction pathways for generating specific products.Finally,the problems and challenges of the CCER process are summarized and proposed,which provide ideas for the further application of this technology in the future.
基金supported by the Science and Technology Foundation of China Electric Power Research Institute(Development of high-energy-density alloy solid hydrogen storage materials,DG8323-002)。
文摘Metallic single-atom catalysts(SACs)have demonstrated high activity and potential in enhancing the hydrogen storage properties of MgH_(2).However,previous reports primarily focus on supported SACs,which often suffer from insufficient co ntact between single-atom active sites and hydrogen storage materials.In this study,the precursor Mo(CO)_(6)is uniformly dispersed on the surface of MgH_(2)via impregnation adsorption,leading to the formation of alloy-type Mo single atoms after hydrogenation/dehydrogenation activation.This alloy structure enables zero-distance contact between catalytic sites and the hydrogen storage material,facilitating electron exchange and hydrogen transfer between the Mo sites and MgH_(2).The MgH_(2)loaded with Mo single atoms(Mo_(1)-MgH_(2))exhibits excellent hydrogen absorption and desorption properties,with the initial hydrogen release temperature lowered from 323 to 218℃.At 250℃,Mo_(1)-MgH_(2)absorbs over 6.77 wt% of hydrogen within 1 min and releases over 5.85 wt% within 4 h.During 10 cycles of hydrogenation and dehydrogenation reactions,Mo_(1)-MgH_(2)maintains nearly 100% capacity and shows stable kinetics.This work provides new insights into the design and fabrication of catalysts for hydrogen storage materials.
基金Funded by National Natural Science Foundation of China(No.52494933)。
文摘Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scanning electron microscope),and XPS(X-ray photoelectron spectroscopy)and the purification effect on NO_(x) and PM was measured through simulated emission experiments.The results indicate that CuCrO_(2) catalyst has good catalytic activity,the maximum NO_(x) conversion rate can be up to 28.15%,and the ignition temperature of PM can be reduced to 285℃.When the molecular ratio of Cr:Fe=9:1,the catalyst can achieve better catalytic effect,the maximum NO_(x) conversion rate will be up to 30.25%and the PM ignition temperature can be reduced to 280℃.In addition,the catalytic activity of catalyst supported on different carriers was also studied.The results show that catalyst on SiC foam ceramic carrier has better catalytic activity than that on cordierite honeycomb ceramic carrier.The maximum NO_(x) conversion of CuCrO_(2) and CuCr_(0.9)Fe_(0.1)O_(2) can be increased by 0.72%and 1.33%respectively,and the PM ignition temperature can be further reduced by 15 and 5℃respectively.
基金supported by the National Key Research and Development Program of China(2022ZD0117501)the Scientific Research Innovation Capability Support Project for Young Faculty(ZYGXQNJSKYCXNLZCXM-E7)the Tsinghua University Initiative Scientific Research Program and the Carbon Neutrality and Energy System Transformation(CNEST)Program led by Tsinghua University.
文摘Industrial decarbonization is critical for achieving net-zero goals.The carbon dioxide electrochemical reduction reaction(CO_(2)RR)is a promising approach for converting CO_(2)into high-value chemicals,offering the potential for decarbonizing industrial processes toward a sustainable,carbon-neutral future.However,developing CO_(2)RR catalysts with high selectivity and activity remains a challenge due to the complexity of finding such catalysts and the inefficiency of traditional computational or experimental approaches.Here,we present a methodology integrating density functional theory(DFT)calculations,deep learning models,and an active learning strategy to rapidly screen high-performance catalysts.The proposed methodology is then demonstrated on graphene-based single-atom catalysts for selective CO_(2)electroreduction to methanol.First,we conduct systematic binding energy calculations for 3045 single-atom catalysts to identify thermodynamically stable catalysts as the design space.We then use a graph neural network,fine-tuned with a specialized adsorption energy database,to predict the relative activity and selectivity of the candidate catalysts.An autonomous active learning framework is used to facilitate the exploration of designs.After six learning cycles and 2180 adsorption calculations across 15 intermediates,we develop a surrogate model that identifies four novel catalysts on the Pareto front of activity and selectivity.Our work demonstrates the effectiveness of leveraging a domain foundation model with an active learning framework and holds potential to significantly accelerate the discovery of high-performance CO_(2)RR catalysts.
基金financial support from the National Natural Science Foundation of China(Grant NO.22466023,52470119,52260013)the Applied Basic Research Foundation of Yunnan Province(Grant NO.202401AT070408)+1 种基金Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials(Grant NO.202205AG070067)Yunnan Technological Innovation Center of Phosphorus Resources(Grant NO.202305AK340002)。
文摘In this study,a novel Pt-loaded Cu Pc/g-C_(3)N_(4)(Pt Cu CN)composite was synthesized for the selective photocatalytic reduction of CO_(2)to CH_(4)under visible light.The Pt Cu CN catalyst achieved a CH_(4)yield of 39.8μmol g^(-1)h^(-1),significantly outperforming bulk g-C_(3)N_(4)and Cu Pc alone by factors of 2.5 and 3.1,respectively,with a high selectivity of 90%.In comparison with other commonly studied photocatalysts,such as g-C_(3)N_(4)-based catalysts,the Pt Cu CN composite exhibited superior CH_(4)yield and product selectivity,demonstrating its potential as a more efficient photocatalyst for CO_(2)reduction.X-ray photoelectron spectroscopy(XPS),density functional theory(DFT)calculations,and in-situ infrared(IR)analysis revealed that the Pt^(0)species effectively lower the activation energy for CH_(4)formation,while Cu Pc extends the light absorption range and enhances charge separation.The combined effects of these components in a Z-scheme heterojunction provide new insights into designing highly selective CO_(2)-to-CH_(4)photocatalysts.This work demonstrates the potential of Pt Cu CN as a highly efficient and stable catalyst for CO_(2)reduction to CH_(4)under visible light.
基金the funding support from the National Natural Science Foundation of China(No.22308066)the Science and Technology Major Program of Guangxi(No.Guike AA23062018)+2 种基金the Guangxi Science and Technology Base and Talent Special Project(Nos.2021AC19353,2022AC20018,AD23026311)the Natural Science Foundation of Guangxi Province(No.2024GXNSFAA010271)the Innovation Project of Guangxi Graduate Education(No.YCBZ2022012)。
文摘Copper(Cu)is widely used in the electrochemical carbon dioxide reduction reaction(ECO_(2)RR)for efficient methane(CH_(4))product.However,the morphology and valence of Cu-based catalysts are usually unstable under reaction conditions.In this work,we prepared Ce-doped MOF-199 precursor(Ce/HKUST-1)and further obtained nanoparticle electrocatalyst Ce/CuO_(x)-NPs by cyclic voltammetry(CV)pretreatment.The Faradic efficiency of methane(FE_(CH_(4)))maintains above 62%within a broad potential window of 350 mV and the maximum FE_(CH_(4))reaches 67.4%with a partial current density of 293 mA/cm^(2)at-1.6 V vs.a reversible hydrogen electrode.Catalyst characterization and theoretical calculations revealed that the unique electronic structure and large ionic radius of Cerium(Ce)not only promoted the generation of key intermediate*CO but also lowered energy barrier of the*CO to*CHO step.This study provides a novel and efficient catalyst for methane production in ECO_(2)RR and offers profound insights into constructing high performance Cu-based catalysts.
文摘CO_(2) hydrogenation to CH3OH is of great significance for achieving carbon neutrality.Here,we show a urea-assisted grinding strategy for synthesizing Cu-Zn-Ce ternary catalysts(CZC-G)with optimized interfacial synergy,achieving superior performance in CO_(2) hydrogenation to methanol.The CZC-G catalyst demonstrated exceptional methanol selectivity(96.8%)and a space-time yield of 73.6 gMeOH·kgcat^(–1)·h^(–1) under optimized conditions.Long-term stability tests confirmed no obvious deactivation over 100 h of continuous operation.Structural and mechanistic analyses revealed that the urea-assisted grinding method promotes the formation of Cu/Zn-O_(v)-Ce ternary interfaces and inhibits the reduction of ZnO,enabling synergistic interactions for efficient CO_(2) activation and selective stabilization of formate intermediates(HCOO^(*)),which are critical for methanol synthesis.In-situ diffuse reflectance infrared Fourier transform spectra and X-ray absorption spectroscopy studies elucidated the reaction pathway dominated by the formate mechanism,while suppressing the reverse water-gas shift reaction.This work underscores the critical role of synthetic methodologies in engineering interfacial structures,offering a strategy for designing high-performance catalysts for sustainable CO_(2) resource utilization.