Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isothe...Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isotherms, powder X-ray diffraction, temperature-programmed reduction and Xray photoelectron spectroscopy. It is observed that the catalyst prepared by hydrothermal method exhibits larger specific surface area, smaller crystalline size and higher dispersion of active components compared with those of the catalyst obtained by coprecipitation. Meanwhile, redox properties of copper oxide are improved significantly and highly dispersed copper species providing CO oxidation sites are present on the surface. Furthermore, adsorptive centers of CO and active oxygen species increase on the copper-ceria interfaces. The Zr-doped CuO-CeO2 catalyst prepared by hydrothermal method possesses superior catalytic activity and selectivity for selective oxidation of CO at low temperature compared with those of the sample prepared by coprecipitation. The temperature corresponding to 50% CO conversion is only 73 ℃ and the temperature span of total CO conversion is expanded from 120 to 160 ℃.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping...The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping is the primary method to enhance the reaction characteristics of calcium-based materials over multiple cycles.In particular,co-doping with variable-valence metal oxides(VVMOs)can effectively increase the oxygen vacancy content in calcium-based materials,significantly improving their cyclic reaction characteristics.However,there are so numerous VVMOs co-doping schemes that the experimental screening process is complex,consuming considerable time and economic costs.Density functional theory(DFT)calculations have been widely used to reveal the impact of metal oxide doping on the cyclic reaction characteristics of calcium-based materials,with calculation results showing good agreement with experimental conclusions.Nevertheless,there is still a lack of research on utilizing DFT to screen calcium-based materials,and a systematic research methodology has not yet been established.In this study,a systematic DFT-based screening methodology for calcium-based materials was proposed.A series of key parameters for DFT calculations including CO_(2)adsorption energy,oxygen vacancy formation energy,and sintering resistance were proposed.Furthermore,a preliminary mathematical model to predict the CaL TCES and CO_(2)capture performance of calcium-based materials was introduced.The aforementioned DFT method was employed to screen for VVMOs co-doped calcium-based materials.The results revealed that Mn and Ce co-doped calcium-based materials exhibited superior DFT-predicted reaction characteristics.These DFT predictions were validated through experimental assessments of cyclic thermochemical energy storage,CO_(2)capture,and relevant characterization.The outcomes demonstrate a high degree of consistency among DFT-based predictions,experimental results,and characterization.Hence,the DFT-based screening methodology for calcium-based materials proposed herein is a viable solution,poised to offer theoretical insights for the efficient design of calcium-based materials.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders...The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.展开更多
Herein,a series of manganese oxide catalysts with different valences(Mn_(3)O_(4),Mn_(2)O_(3),and MnO_(2))were designed and synthesized for the synthesis of ethylene urea(EU)from ethylenediamine(EDA)and carbon dioxide(...Herein,a series of manganese oxide catalysts with different valences(Mn_(3)O_(4),Mn_(2)O_(3),and MnO_(2))were designed and synthesized for the synthesis of ethylene urea(EU)from ethylenediamine(EDA)and carbon dioxide(CO_(2)).With a maximal EDA conversion of 82%and EU selectivity of 99%at 160℃ for 2 h,Mn_(2)O_(3) catalysts had the best catalytic activity among them,which was superior to the reported catalysts.In the following order:Mn_(2)O_(3)>MnO_(2)>Mn_(3)O_(4),the catalytic activity for the synthesis of EU from CO_(2) and EDA decreased.Further characterization showed the Mn_(2)O_(3) catalyst possessed a greater Mn^(3+)/Mn4+ratio and more surface oxygen vacancies than the MnO_(2) and Mn_(3)O_(4),which improved its capacity to adsorb and activate CO_(2) and EDA.After four recycling runs,the EDA conversion slightly declined from 82%to 56%on Mn_(2)O_(3) catalyst,while no obvious change in EU selectivity was observed.The loss of surface Ov contents and Mn^(3+)proportion were concluded as main reasons for the decrease in catalytic activity over Mn_(2)O_(3) catalyst.This work demonstrated a metal oxide catalyst that was efficient in producing EU from CO_(2) and EDA.展开更多
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ...The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.展开更多
Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely bee...Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts.展开更多
The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire ...The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces.展开更多
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me...The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxida...To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxidation stage,CeO_(2) accelerated the formation of a multiphase glass layer on the coating surface.The maximum oxidation rates of CeO_(2)-HfB2-SiC coatings with 1%,3%,and 5%CeO_(2) were 24.1%,20.3%,and 53.2%higher than that of the unmodified HfB2-SiC coating,respectively.In the stable oxidation stage,the maximum oxidation rates of coatings with 1%and 3%CeO_(2) decreased by 31.4%and 21.9%,respectively,demonstrating adequate inert protection.CeO_(2) is a“coagulant”and“stabilizer”in the composite glass layer.However,increasing the CeO_(2) content accelerates the reaction between the SiO_(2) glass phase and SiC,leading to a higher SiO_(2) consumption and reduced self-healing ability of the glass layer.The 1%CeO_(2)-60%HfB2-39%SiC coating showed improved glass layer viscosity and stability,moderate SiO_(2) consumption,and better self-healing ability,significantly boosting the oxidation protection of the coating.展开更多
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si...Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.展开更多
On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil ...On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts.展开更多
Silicon-carbide-fiber-reinforced silicon-carbide-ceramic-based matrix(SiC/SiC)composites possess excellent properties such as low density,high strength and high temperature resistance,showing a potential application f...Silicon-carbide-fiber-reinforced silicon-carbide-ceramic-based matrix(SiC/SiC)composites possess excellent properties such as low density,high strength and high temperature resistance,showing a potential application for structural components in the aerospace field,but their oxidation behavior remains largely unknown.In this study,Yb_(2)Si_(2)O_(7)modified SiC/SiC(SiC/SiC-Yb_(2)Si_(2)O_(7))mini-composites were prepared by introducing Yb_(2)Si_(2)O_(7)as anti-oxidation phase into SiC fiber bundles via Sol-Gel and depositing SiC matrix by chemical vapor deposition(CVD).Influence of Yb_(2)Si_(2)O_(7)on microstructure,mechanical property and oxidation behavior of SiC/SiC mini-composites was investigated.The results showed that after oxidation in air at 1200 and 1400℃for 50 h,the tensile strength retentions of SiC/SiC mini-composites were 77%and 69%,respectively,and the fracture morphology exhibited flat.The Yb_(2)Si_(2)O_(7)introduced by Sol-Gel partially distributed in layers,contributing to the toughening of the material.On the fracture surface,there was interlayer debonding,which extended energy dissipation mechanism of SiC/SiC mini-composites.Tensile strength of SiC/SiC-Yb_(2)Si_(2)O_(7)mini-composites at room temperature was 484 MPa.After oxidation in air at 1200 and 1400℃for 50 h,the tensile strengths decreased to 425 and 374 MPa,resulting in retention rates of 88%and 77%,respectively.It displayed typical non-brittle fracture characteristics.The interface oxygen content of SiC/SiC mini-composites at the fracture surface was higher than that of SiC/SiC-Yb_(2)Si_(2)O_(7)mini-composites,indicating that introduction of Yb_(2)Si_(2)O_(7)could alleviate oxygen diffusion towards the interface,and therefore improve the oxidation resistance of SiC/SiC-Yb_(2)Si_(2)O_(7)mini-composites.展开更多
Objective:Limb ischemia-reperfusion injury(LIRI)may lead to tissue necrosis and loss of function,even life-threatening.Our previous study found that Tao-Hong-Si-Wu decoction(THSWD)had some efficacy in treating of LIRI...Objective:Limb ischemia-reperfusion injury(LIRI)may lead to tissue necrosis and loss of function,even life-threatening.Our previous study found that Tao-Hong-Si-Wu decoction(THSWD)had some efficacy in treating of LIRI.Quercetin,the major component of THSWD,was selected further to uncover the molecular mechanism underlying its treatment of LIRI.Methods:In this study,myoblasts were isolated fromrat gastrocnemiusmuscle tissue,and an in vitro LIRI model was established.The cell counting kit-8(CCK-8)and colony formation assay were used to evaluate the impact of quercetin on LIRI-induced myoblast viability and proliferation.Lactate dehydrogenase(LDH)activity wasmeasured to detectmyoblast injury in the LIRI model.Theapoptosis ofmyoblasts was evaluated byHoechst staining and flow cytometry.In addition,molecular docking analysis was performed to predict the interaction between quercetin and NADPH oxidase 2(NOX-2).Subsequently,we investigated the molecular mechanism of quercetin in LIRI-induced myoblasts by overexpressing NOX-2.Results:The myogenic marker Desmin was highly expressed in isolatedmyoblasts.In the LIRImodel,myoblast viability and proliferation were decreased,and cell injury and apoptosis levels were increased.In addition,NOX-2 was highly expressed in the LIRI model.At the same time,LIRI induction promoted the up-regulation of oxidative stress and inflammatory response.Quercetin significantly reversed the effects of LIRI treatment on myoblasts in a concentration-dependent manner.Molecular docking suggested an interaction between quercetin and NOX-2.Further overexpression of NOX-2 inhibited the effect of quercetin on LIRI-induced myoblasts.Conclusion:Quercetin could reduce inflammatory response and oxidative stress by inhibiting NOX-2,thus playing a therapeutic role in treating LIRI.展开更多
Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduce...Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduced graphene oxide(rGO)films.2D graphene oxide(GO)films are integrated onto silicon waveguides and microring resonators(MRRs)with precise control over their thicknesses and sizes,followed by GO reduction via two different methods including uniform thermal reduction and localized photothermal reduction.We measure devices with various lengths,thicknesses,and reduction degrees of GO films.The results show that the devices with rGO exhibit better performance than those with GO,achieving a polarization-dependent loss of~47 dB and a polarization extinction ratio of~16 dB for the hybrid waveguides and MRRs with rGO,respectively.By fitting the experimental results with theory,it is found that rGO exhibits more significant anisotropy in loss,with an anisotropy ratio over 4 times that of GO.In addition,rGO shows higher thermal stability and greater robustness to photothermal reduction than GO.These results highlight the strong potential of rGO films for implementing high-performance polarization selective devices in integrated photonic platforms.展开更多
The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically appl...The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically applied.The traditional lattice oxygen oxidation mechanism(LOM)offers an advantageous route by circumventing the formation of M-OOH^(*)in the adsorption evolution mechanism(AEM),thus enhancing the reaction kinetics of the OER but resulting in possible structural destabilization due to the decreased M–O bond order.Fortunately,the asymmetry of tetrahedral and octahedral sites in transition metal spinel oxides permits the existence of non-bonding oxygen,which could be activated by rational band structure design for direct O-O coupling,where the M–O bond maintains its initial bond order.Here,non-bonding oxygen was introduced into NiFe_(2)O_(4)via annealing in an oxygen-deficient atmosphere.Then,in-situ grown sulfate species on octahedral nickel sites significantly improved the reactivity of the non-bonding oxygen electrons,thereby facilitating the transformation of the redox center from metal to oxygen.LOM based on non-bonding oxygen(LOMNB)was successfully activated within NiFe_(2)O_(4),exhibiting a low overpotential of 206 mV to achieve a current density of 10 mA cm^(-2)and excellent durability of stable operation for over 150 h.Additionally,catalysts featuring varying band structures were synthesized for comparative analysis,and it was found that the reversible redox processes of non-bonding oxygen and the accumulation of non-bonding oxygen species containing 2p holes are critical prerequisites for triggering and sustaining the LOMNB pathway in transition metal spinel oxides.These findings may provide valuable insights for the future development of spinel-oxide-based LOM catalysts.展开更多
Reducing the cost of RuO_(2)/TiO_(2)catalysts is still one of the urgent challenges in catalytic HCl oxidation.In the present work,a Ce-doped TiO_(2)supported RuO_(2)catalyst with a low Ru loading was developed,showin...Reducing the cost of RuO_(2)/TiO_(2)catalysts is still one of the urgent challenges in catalytic HCl oxidation.In the present work,a Ce-doped TiO_(2)supported RuO_(2)catalyst with a low Ru loading was developed,showing a high activity in the catalytic oxidation of HCl to Cl_(2).The results on some extensive characterizations of both Ce-doped TiO_(2)carriers and their supported RuO_(2)catalysts show that the doping of Ce into TiO_(2)can effectively change the lattice parameters of TiO_(2)to improve the dispersion of the active RuO_(2)species on the carrier,which facilitates the production of surface Ru species to expose more active sites for boosting the catalytic performance even under some harsh reaction conditions.This work provides some scientific basis and technical support for chlorine recycling.展开更多
Two-dimensional(2D)metal oxides(2DMOs),such as MoO_(2),have made impressive strides in recent years,and their applicability in a number of fields such as electronic devices,optoelectronic devices and lasers has been d...Two-dimensional(2D)metal oxides(2DMOs),such as MoO_(2),have made impressive strides in recent years,and their applicability in a number of fields such as electronic devices,optoelectronic devices and lasers has been demonstrated.However,2DMOs present challenges in their synthesis using conventional methods due to their non-van der Waals nature.We report that KCl acts as a flux to prepare large-area 2DMOs with sub-millimeter scale.We systematically investigate the effects of temperature,homogeneous time and cooling rate on the products in the flux method,demonstrating that in this reaction a saturated homogenous solution is obtained upon the melting of the salt and precursor.Afterward,the cooling rate was adjusted to regulate the thickness of the target crystals,leading to the precipitation of 2D non-layered material from the supersaturated solution;by applying this method,the highly crystalline non-layered 2D MoO_(2)flakes with so far the largest lateral size of up to sub-millimeter scale(~464μm)were yielded.Electrical studies have revealed that the 2D MoO_(2)features metallic properties,with an excellent sheet resistance as low as 99Ω·square^(-1 )at room temperature,and exhibits a property of charge density wave in the measurement of resistivity as a function of temperature.展开更多
基金Project supported by the National Natural Science Foundation of China(21406174 and 51508435)
文摘Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isotherms, powder X-ray diffraction, temperature-programmed reduction and Xray photoelectron spectroscopy. It is observed that the catalyst prepared by hydrothermal method exhibits larger specific surface area, smaller crystalline size and higher dispersion of active components compared with those of the catalyst obtained by coprecipitation. Meanwhile, redox properties of copper oxide are improved significantly and highly dispersed copper species providing CO oxidation sites are present on the surface. Furthermore, adsorptive centers of CO and active oxygen species increase on the copper-ceria interfaces. The Zr-doped CuO-CeO2 catalyst prepared by hydrothermal method possesses superior catalytic activity and selectivity for selective oxidation of CO at low temperature compared with those of the sample prepared by coprecipitation. The temperature corresponding to 50% CO conversion is only 73 ℃ and the temperature span of total CO conversion is expanded from 120 to 160 ℃.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Natural Science Foundation of China(52276204 and U22A20435)。
文摘The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping is the primary method to enhance the reaction characteristics of calcium-based materials over multiple cycles.In particular,co-doping with variable-valence metal oxides(VVMOs)can effectively increase the oxygen vacancy content in calcium-based materials,significantly improving their cyclic reaction characteristics.However,there are so numerous VVMOs co-doping schemes that the experimental screening process is complex,consuming considerable time and economic costs.Density functional theory(DFT)calculations have been widely used to reveal the impact of metal oxide doping on the cyclic reaction characteristics of calcium-based materials,with calculation results showing good agreement with experimental conclusions.Nevertheless,there is still a lack of research on utilizing DFT to screen calcium-based materials,and a systematic research methodology has not yet been established.In this study,a systematic DFT-based screening methodology for calcium-based materials was proposed.A series of key parameters for DFT calculations including CO_(2)adsorption energy,oxygen vacancy formation energy,and sintering resistance were proposed.Furthermore,a preliminary mathematical model to predict the CaL TCES and CO_(2)capture performance of calcium-based materials was introduced.The aforementioned DFT method was employed to screen for VVMOs co-doped calcium-based materials.The results revealed that Mn and Ce co-doped calcium-based materials exhibited superior DFT-predicted reaction characteristics.These DFT predictions were validated through experimental assessments of cyclic thermochemical energy storage,CO_(2)capture,and relevant characterization.The outcomes demonstrate a high degree of consistency among DFT-based predictions,experimental results,and characterization.Hence,the DFT-based screening methodology for calcium-based materials proposed herein is a viable solution,poised to offer theoretical insights for the efficient design of calcium-based materials.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金financially National Key R&D Program of China(No.2022YFA1504800)National Natural Science Foundation of China(Grant No.22325405,22372160,22321002)+1 种基金Liaoning Revitalization Talents Program(XLYC1807207)DICP I202104。
文摘The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.
基金supported by the National Natural Science Foundation of China(No.22278041)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K78)+1 种基金Jiangsu Province Key Laboratory of Fine Petrochemical Engineering(No.KF2107)the Advanced Catalysis and Green Manufacturing Collab-orative Innovation Center(No.ACGM2022-10-07)。
文摘Herein,a series of manganese oxide catalysts with different valences(Mn_(3)O_(4),Mn_(2)O_(3),and MnO_(2))were designed and synthesized for the synthesis of ethylene urea(EU)from ethylenediamine(EDA)and carbon dioxide(CO_(2)).With a maximal EDA conversion of 82%and EU selectivity of 99%at 160℃ for 2 h,Mn_(2)O_(3) catalysts had the best catalytic activity among them,which was superior to the reported catalysts.In the following order:Mn_(2)O_(3)>MnO_(2)>Mn_(3)O_(4),the catalytic activity for the synthesis of EU from CO_(2) and EDA decreased.Further characterization showed the Mn_(2)O_(3) catalyst possessed a greater Mn^(3+)/Mn4+ratio and more surface oxygen vacancies than the MnO_(2) and Mn_(3)O_(4),which improved its capacity to adsorb and activate CO_(2) and EDA.After four recycling runs,the EDA conversion slightly declined from 82%to 56%on Mn_(2)O_(3) catalyst,while no obvious change in EU selectivity was observed.The loss of surface Ov contents and Mn^(3+)proportion were concluded as main reasons for the decrease in catalytic activity over Mn_(2)O_(3) catalyst.This work demonstrated a metal oxide catalyst that was efficient in producing EU from CO_(2) and EDA.
基金supported by the National Key R&D Program of China(No.2022YFB2404400)the National Natural Science Foundation of China(Nos.U23A20577,52372168,92263206 and 21975006)+1 种基金the“The Youth Beijing Scholars program”(No.PXM2021_014204_000023)the Beijing Natural Science Foundation(Nos.2222001 and KM202110005009).
文摘The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.
文摘Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts.
基金supported by the Swedish Energy Agency(P47500-1)the National Key R&D Program of China(2020YFA0710200)+2 种基金the National Natural Science Foundation of China(22378401 and U22A20416)the financial support from STINT(CH2019-8287)financial support from the European Union and Swedish Energy Agency(P2020-90066).
文摘The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces.
基金funded by the National Natural Science Foundation of China,China (Nos.52272303 and 52073212)the General Program of Municipal Natural Science Foundation of Tianjin,China (Nos.17JCYBJC22700 and 17JCYBJC17000)the State Scholarship Fund of China Scholarship Council,China (Nos.201709345012 and 201706255009)。
文摘The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
文摘To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxidation stage,CeO_(2) accelerated the formation of a multiphase glass layer on the coating surface.The maximum oxidation rates of CeO_(2)-HfB2-SiC coatings with 1%,3%,and 5%CeO_(2) were 24.1%,20.3%,and 53.2%higher than that of the unmodified HfB2-SiC coating,respectively.In the stable oxidation stage,the maximum oxidation rates of coatings with 1%and 3%CeO_(2) decreased by 31.4%and 21.9%,respectively,demonstrating adequate inert protection.CeO_(2) is a“coagulant”and“stabilizer”in the composite glass layer.However,increasing the CeO_(2) content accelerates the reaction between the SiO_(2) glass phase and SiC,leading to a higher SiO_(2) consumption and reduced self-healing ability of the glass layer.The 1%CeO_(2)-60%HfB2-39%SiC coating showed improved glass layer viscosity and stability,moderate SiO_(2) consumption,and better self-healing ability,significantly boosting the oxidation protection of the coating.
文摘Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.
基金National Key Research and Development Program of China(2020YFA0710302)The Major Research Plan of the National Natural Science Foundation of China(91963206)+2 种基金The National Natural Science Foundation of China(52072169,51972164,51972167,22279053)The Fundamental Research Funds for the Central Universities(14380193)The Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08L101).
文摘On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts.
基金National Natural Science Foundation of China(52222202)National Key R&D Program of China(2022YFB3707700)+2 种基金Project of Shanghai Science and Technology Innovation Action Plan(21511104800)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(JCYJ-SHFY-2021-001)Science Center for Gas Turbine Project(P2022-B-Ⅳ-001-001)。
文摘Silicon-carbide-fiber-reinforced silicon-carbide-ceramic-based matrix(SiC/SiC)composites possess excellent properties such as low density,high strength and high temperature resistance,showing a potential application for structural components in the aerospace field,but their oxidation behavior remains largely unknown.In this study,Yb_(2)Si_(2)O_(7)modified SiC/SiC(SiC/SiC-Yb_(2)Si_(2)O_(7))mini-composites were prepared by introducing Yb_(2)Si_(2)O_(7)as anti-oxidation phase into SiC fiber bundles via Sol-Gel and depositing SiC matrix by chemical vapor deposition(CVD).Influence of Yb_(2)Si_(2)O_(7)on microstructure,mechanical property and oxidation behavior of SiC/SiC mini-composites was investigated.The results showed that after oxidation in air at 1200 and 1400℃for 50 h,the tensile strength retentions of SiC/SiC mini-composites were 77%and 69%,respectively,and the fracture morphology exhibited flat.The Yb_(2)Si_(2)O_(7)introduced by Sol-Gel partially distributed in layers,contributing to the toughening of the material.On the fracture surface,there was interlayer debonding,which extended energy dissipation mechanism of SiC/SiC mini-composites.Tensile strength of SiC/SiC-Yb_(2)Si_(2)O_(7)mini-composites at room temperature was 484 MPa.After oxidation in air at 1200 and 1400℃for 50 h,the tensile strengths decreased to 425 and 374 MPa,resulting in retention rates of 88%and 77%,respectively.It displayed typical non-brittle fracture characteristics.The interface oxygen content of SiC/SiC mini-composites at the fracture surface was higher than that of SiC/SiC-Yb_(2)Si_(2)O_(7)mini-composites,indicating that introduction of Yb_(2)Si_(2)O_(7)could alleviate oxygen diffusion towards the interface,and therefore improve the oxidation resistance of SiC/SiC-Yb_(2)Si_(2)O_(7)mini-composites.
基金supported by National Natural Science Foundation of China(Grant 82274541&81674008)Key Project of Hunan Provincial Health Commission(Grant 202204072465)Natural Science Foundation of Hunan Province(Grant 2020JJ4070).
文摘Objective:Limb ischemia-reperfusion injury(LIRI)may lead to tissue necrosis and loss of function,even life-threatening.Our previous study found that Tao-Hong-Si-Wu decoction(THSWD)had some efficacy in treating of LIRI.Quercetin,the major component of THSWD,was selected further to uncover the molecular mechanism underlying its treatment of LIRI.Methods:In this study,myoblasts were isolated fromrat gastrocnemiusmuscle tissue,and an in vitro LIRI model was established.The cell counting kit-8(CCK-8)and colony formation assay were used to evaluate the impact of quercetin on LIRI-induced myoblast viability and proliferation.Lactate dehydrogenase(LDH)activity wasmeasured to detectmyoblast injury in the LIRI model.Theapoptosis ofmyoblasts was evaluated byHoechst staining and flow cytometry.In addition,molecular docking analysis was performed to predict the interaction between quercetin and NADPH oxidase 2(NOX-2).Subsequently,we investigated the molecular mechanism of quercetin in LIRI-induced myoblasts by overexpressing NOX-2.Results:The myogenic marker Desmin was highly expressed in isolatedmyoblasts.In the LIRImodel,myoblast viability and proliferation were decreased,and cell injury and apoptosis levels were increased.In addition,NOX-2 was highly expressed in the LIRI model.At the same time,LIRI induction promoted the up-regulation of oxidative stress and inflammatory response.Quercetin significantly reversed the effects of LIRI treatment on myoblasts in a concentration-dependent manner.Molecular docking suggested an interaction between quercetin and NOX-2.Further overexpression of NOX-2 inhibited the effect of quercetin on LIRI-induced myoblasts.Conclusion:Quercetin could reduce inflammatory response and oxidative stress by inhibiting NOX-2,thus playing a therapeutic role in treating LIRI.
基金supported by the Australian Research Council Centre of Excellence Project in Optical Microcombs for Breakthrough Science(No.CE230100006)the Australian Research Council Discovery Projects Programs(Nos.P190103186 and FT210100806)+4 种基金Linkage Program(Nos.LP210200345 and LP210100467)the Swinburne ECR-SUPRA program,the Industrial Transformation Training Centres scheme(No.IC180100005)the National Natural Science Foundation of China(No.12404375)the Beijing Natural Science Foundation(No.Z180007)the Innovation Program for Quantum Science and Technology(No.2021ZD0300703).
文摘Optical polarizers,which allow the transmission of specific polarization states,are essential components in modern optical systems.Here,we experimentally demonstrate integrated photonic polarizers incorporating reduced graphene oxide(rGO)films.2D graphene oxide(GO)films are integrated onto silicon waveguides and microring resonators(MRRs)with precise control over their thicknesses and sizes,followed by GO reduction via two different methods including uniform thermal reduction and localized photothermal reduction.We measure devices with various lengths,thicknesses,and reduction degrees of GO films.The results show that the devices with rGO exhibit better performance than those with GO,achieving a polarization-dependent loss of~47 dB and a polarization extinction ratio of~16 dB for the hybrid waveguides and MRRs with rGO,respectively.By fitting the experimental results with theory,it is found that rGO exhibits more significant anisotropy in loss,with an anisotropy ratio over 4 times that of GO.In addition,rGO shows higher thermal stability and greater robustness to photothermal reduction than GO.These results highlight the strong potential of rGO films for implementing high-performance polarization selective devices in integrated photonic platforms.
文摘The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically applied.The traditional lattice oxygen oxidation mechanism(LOM)offers an advantageous route by circumventing the formation of M-OOH^(*)in the adsorption evolution mechanism(AEM),thus enhancing the reaction kinetics of the OER but resulting in possible structural destabilization due to the decreased M–O bond order.Fortunately,the asymmetry of tetrahedral and octahedral sites in transition metal spinel oxides permits the existence of non-bonding oxygen,which could be activated by rational band structure design for direct O-O coupling,where the M–O bond maintains its initial bond order.Here,non-bonding oxygen was introduced into NiFe_(2)O_(4)via annealing in an oxygen-deficient atmosphere.Then,in-situ grown sulfate species on octahedral nickel sites significantly improved the reactivity of the non-bonding oxygen electrons,thereby facilitating the transformation of the redox center from metal to oxygen.LOM based on non-bonding oxygen(LOMNB)was successfully activated within NiFe_(2)O_(4),exhibiting a low overpotential of 206 mV to achieve a current density of 10 mA cm^(-2)and excellent durability of stable operation for over 150 h.Additionally,catalysts featuring varying band structures were synthesized for comparative analysis,and it was found that the reversible redox processes of non-bonding oxygen and the accumulation of non-bonding oxygen species containing 2p holes are critical prerequisites for triggering and sustaining the LOMNB pathway in transition metal spinel oxides.These findings may provide valuable insights for the future development of spinel-oxide-based LOM catalysts.
基金supported by Zhejiang Provincial Key R&D Project(No.2021C01056)the Programme of Introducing Talents of Discipline to Universities(No.D17008).
文摘Reducing the cost of RuO_(2)/TiO_(2)catalysts is still one of the urgent challenges in catalytic HCl oxidation.In the present work,a Ce-doped TiO_(2)supported RuO_(2)catalyst with a low Ru loading was developed,showing a high activity in the catalytic oxidation of HCl to Cl_(2).The results on some extensive characterizations of both Ce-doped TiO_(2)carriers and their supported RuO_(2)catalysts show that the doping of Ce into TiO_(2)can effectively change the lattice parameters of TiO_(2)to improve the dispersion of the active RuO_(2)species on the carrier,which facilitates the production of surface Ru species to expose more active sites for boosting the catalytic performance even under some harsh reaction conditions.This work provides some scientific basis and technical support for chlorine recycling.
基金supported by the National Key Research and Development Program of China(Nos.2023YFB3608703 and 2023YFB3608700)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(Nos.2021ZZ122 and 2020ZZ110)Fujian provincial projects(Nos.2021HZ0114 and 2021J01583).
文摘Two-dimensional(2D)metal oxides(2DMOs),such as MoO_(2),have made impressive strides in recent years,and their applicability in a number of fields such as electronic devices,optoelectronic devices and lasers has been demonstrated.However,2DMOs present challenges in their synthesis using conventional methods due to their non-van der Waals nature.We report that KCl acts as a flux to prepare large-area 2DMOs with sub-millimeter scale.We systematically investigate the effects of temperature,homogeneous time and cooling rate on the products in the flux method,demonstrating that in this reaction a saturated homogenous solution is obtained upon the melting of the salt and precursor.Afterward,the cooling rate was adjusted to regulate the thickness of the target crystals,leading to the precipitation of 2D non-layered material from the supersaturated solution;by applying this method,the highly crystalline non-layered 2D MoO_(2)flakes with so far the largest lateral size of up to sub-millimeter scale(~464μm)were yielded.Electrical studies have revealed that the 2D MoO_(2)features metallic properties,with an excellent sheet resistance as low as 99Ω·square^(-1 )at room temperature,and exhibits a property of charge density wave in the measurement of resistivity as a function of temperature.