Storing solar energy in battery systems is crucial to achieving a green and sustainable society.However,the efficient development of photo-enhanced zinc-air batteries(ZABs)is limited by the rapid recombination of phot...Storing solar energy in battery systems is crucial to achieving a green and sustainable society.However,the efficient development of photo-enhanced zinc-air batteries(ZABs)is limited by the rapid recombination of photogenerated carriers on the photocathode.In this work,the visible-light-driven CoS_(2)/CuS@CNT-C_(3)N_(4)photocatalyst with unique petal-like layer structure was designed and developed,which can be used as air electrode for visible-light-driven ZABs.The superior performance of ZABs assembled by CoS_(2)/CuS@CNT-C_(3)N_(4)was mainly attributed to the successful construction of Schottky heterojunction between g-C_(3)N_(4)and carbon nanotubes(CNTs),which accelerates the transfer of electrons from g-C_(3)N_(4)to CoS_(2)/CuS cocatalysts,improves the carrier separation ability,and extends the carrier lifetime.Thereinto,the visible-driven ZABs assembled by CoS_(2)/CuS@CNT-C_(3)N_(4)photocatalyst has a power density of 588.90 mW cm^(-2) and a charge-discharge cycle of 643 h under visible light irradiation,which is the highest performance ever reported for photo-enhanced ZABs.More importantly,the charge-discharge voltage drop of ZABs was only 0.54 V under visible light irradiation,which is significantly lower than the voltage drop(0.94 V)in the dark.This study provides a new idea for designing efficient and stable visible-light-driven ZABs cathode catalysts.展开更多
以分析纯Zn O、Cu O、Al2O3、Ti O2以及Sr CO3为原料,采用传统固相法制备了(1-x)Zn0.99Cu0.01Al2O4-x Sr Ti O3(ZCAST,x=0~0.045)微波介质陶瓷,利用X射线衍射仪、扫描电镜和网络分析仪对其结构、形貌和微波介电性能进行表征。研究...以分析纯Zn O、Cu O、Al2O3、Ti O2以及Sr CO3为原料,采用传统固相法制备了(1-x)Zn0.99Cu0.01Al2O4-x Sr Ti O3(ZCAST,x=0~0.045)微波介质陶瓷,利用X射线衍射仪、扫描电镜和网络分析仪对其结构、形貌和微波介电性能进行表征。研究了不同x值对ZCAST陶瓷相组成、显微结构以及微波介电性能的影响。结果表明,ZCAST陶瓷的体积密度、介电常数εr随着Sr Ti O3含量的增多而增大。当x=0.04具有最佳微波介电性能:介电常数εr=14.12,品质因数Q×f=28700 GHz,频率温度系数τf=-1.8×10-6/℃。展开更多
2LiFe1-xCoxPO4-Li3V2(P04)3/C was synthesized using Fel-2xCo2xVO4 as precursor which was prepared by a simple co-precipitation method. 2LiFej-xCoxPO4-Li3V2(PO4)3/C samples were characterized by X-ray diffraction (...2LiFe1-xCoxPO4-Li3V2(P04)3/C was synthesized using Fel-2xCo2xVO4 as precursor which was prepared by a simple co-precipitation method. 2LiFej-xCoxPO4-Li3V2(PO4)3/C samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. All 2LiFel-xCoxPOa-Li3V2(PO4)3/C composites are of the similar crystal structure. The XRD analysis and SEM images show that 2LiFe0.96Co0.04PO4-Li3V2(PO4)3/C sample has the best-ordered structure and the smallest particle size. The charge-discharge tests demonstrate that these powders have the best electrochemical properties with an initial discharge capacity of 144.1 mA.h/g and capacity retention of 95.6% after 100 cycles when cycled at a current density of 0.1C between 2.5 and 4.5 V.展开更多
文摘Storing solar energy in battery systems is crucial to achieving a green and sustainable society.However,the efficient development of photo-enhanced zinc-air batteries(ZABs)is limited by the rapid recombination of photogenerated carriers on the photocathode.In this work,the visible-light-driven CoS_(2)/CuS@CNT-C_(3)N_(4)photocatalyst with unique petal-like layer structure was designed and developed,which can be used as air electrode for visible-light-driven ZABs.The superior performance of ZABs assembled by CoS_(2)/CuS@CNT-C_(3)N_(4)was mainly attributed to the successful construction of Schottky heterojunction between g-C_(3)N_(4)and carbon nanotubes(CNTs),which accelerates the transfer of electrons from g-C_(3)N_(4)to CoS_(2)/CuS cocatalysts,improves the carrier separation ability,and extends the carrier lifetime.Thereinto,the visible-driven ZABs assembled by CoS_(2)/CuS@CNT-C_(3)N_(4)photocatalyst has a power density of 588.90 mW cm^(-2) and a charge-discharge cycle of 643 h under visible light irradiation,which is the highest performance ever reported for photo-enhanced ZABs.More importantly,the charge-discharge voltage drop of ZABs was only 0.54 V under visible light irradiation,which is significantly lower than the voltage drop(0.94 V)in the dark.This study provides a new idea for designing efficient and stable visible-light-driven ZABs cathode catalysts.
文摘以分析纯Zn O、Cu O、Al2O3、Ti O2以及Sr CO3为原料,采用传统固相法制备了(1-x)Zn0.99Cu0.01Al2O4-x Sr Ti O3(ZCAST,x=0~0.045)微波介质陶瓷,利用X射线衍射仪、扫描电镜和网络分析仪对其结构、形貌和微波介电性能进行表征。研究了不同x值对ZCAST陶瓷相组成、显微结构以及微波介电性能的影响。结果表明,ZCAST陶瓷的体积密度、介电常数εr随着Sr Ti O3含量的增多而增大。当x=0.04具有最佳微波介电性能:介电常数εr=14.12,品质因数Q×f=28700 GHz,频率温度系数τf=-1.8×10-6/℃。
基金Project(51072233) supported by National Natural Science Foundation of China
文摘2LiFe1-xCoxPO4-Li3V2(P04)3/C was synthesized using Fel-2xCo2xVO4 as precursor which was prepared by a simple co-precipitation method. 2LiFej-xCoxPO4-Li3V2(PO4)3/C samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. All 2LiFel-xCoxPOa-Li3V2(PO4)3/C composites are of the similar crystal structure. The XRD analysis and SEM images show that 2LiFe0.96Co0.04PO4-Li3V2(PO4)3/C sample has the best-ordered structure and the smallest particle size. The charge-discharge tests demonstrate that these powders have the best electrochemical properties with an initial discharge capacity of 144.1 mA.h/g and capacity retention of 95.6% after 100 cycles when cycled at a current density of 0.1C between 2.5 and 4.5 V.