The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
用溶胶-凝胶法制得Cu/Fe2O3-TiO2光催化材料。用XRD、Ram an、TPR、IR、TEM、UV-V is DRS测试技术和光催化反应等对固体材料的结构和性能进行了表征。结果表明,Fe2O3的质量分数为10%时,在TiO2表面以单分子层分散,Fe2O3的引入使TiO2吸光...用溶胶-凝胶法制得Cu/Fe2O3-TiO2光催化材料。用XRD、Ram an、TPR、IR、TEM、UV-V is DRS测试技术和光催化反应等对固体材料的结构和性能进行了表征。结果表明,Fe2O3的质量分数为10%时,在TiO2表面以单分子层分散,Fe2O3的引入使TiO2吸光限蓝移。Fe2O3含量超过单分子层分散时,有晶相Fe2O3生成,光吸收性能下降。Fe—O—Ti键的形成加强了半导体之间的相互作用,有利于光生载流子在半导体间的输送。少量Cu的引入,使复合材料的吸光域向可见光范围扩展。光催化反应性能与材料的光响应能力密切相关。在光催化CO2和CH3NH2直接合成NH2CH2COOH的反应中,负载质量分数为10%Fe2O3的光催化反应性能最优。在120℃、常压、空速200 h-1、CO2与CH3NH2摩尔比为1∶1和6.5×10-4W/cm2的紫外灯照射下,CH3NH2转化率为1.35%,NH2CH2COOH选择性达92.0%。展开更多
V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventiona...A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventional method, the new catalysts prepared via the new method exhibit much higher BET surface area and pore size, much smaller crystallite size and higher catalytic activity and selectivity in CO 2 hydrogenation to methanol. It is also found that the molar ratio of Cu + to Cu 0 on the surface of the catalyst obtained by coprecipitation-reduction is much higher than that on the reduced catalyst obtained by the conventional method, which could be crucial for its high activity and selectivity for catalytic hydrogenation of CO 2 to methanol.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.
文摘用溶胶-凝胶法制得Cu/Fe2O3-TiO2光催化材料。用XRD、Ram an、TPR、IR、TEM、UV-V is DRS测试技术和光催化反应等对固体材料的结构和性能进行了表征。结果表明,Fe2O3的质量分数为10%时,在TiO2表面以单分子层分散,Fe2O3的引入使TiO2吸光限蓝移。Fe2O3含量超过单分子层分散时,有晶相Fe2O3生成,光吸收性能下降。Fe—O—Ti键的形成加强了半导体之间的相互作用,有利于光生载流子在半导体间的输送。少量Cu的引入,使复合材料的吸光域向可见光范围扩展。光催化反应性能与材料的光响应能力密切相关。在光催化CO2和CH3NH2直接合成NH2CH2COOH的反应中,负载质量分数为10%Fe2O3的光催化反应性能最优。在120℃、常压、空速200 h-1、CO2与CH3NH2摩尔比为1∶1和6.5×10-4W/cm2的紫外灯照射下,CH3NH2转化率为1.35%,NH2CH2COOH选择性达92.0%。
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
文摘A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventional method, the new catalysts prepared via the new method exhibit much higher BET surface area and pore size, much smaller crystallite size and higher catalytic activity and selectivity in CO 2 hydrogenation to methanol. It is also found that the molar ratio of Cu + to Cu 0 on the surface of the catalyst obtained by coprecipitation-reduction is much higher than that on the reduced catalyst obtained by the conventional method, which could be crucial for its high activity and selectivity for catalytic hydrogenation of CO 2 to methanol.