期刊文献+
共找到58,262篇文章
< 1 2 250 >
每页显示 20 50 100
Electrochemical CO_(2)RR to C^(2+)products:A vision of dynamic surfaces of Cu-based catalysts
1
作者 Jinxin Wang Jiaqi Zhang Chen Chen 《Chinese Journal of Catalysis》 2025年第1期83-102,共20页
Electrochemical reduction of CO_(2)(CO_(2)RR)to form high-energy-density and high-value-added multicarbon products has attracted much attention.Selective reduction of CO_(2)to C^(2+)products face the problems of low r... Electrochemical reduction of CO_(2)(CO_(2)RR)to form high-energy-density and high-value-added multicarbon products has attracted much attention.Selective reduction of CO_(2)to C^(2+)products face the problems of low reaction rate,complex mechanism and low selectivity.Currently,except for a few examples,copper-based catalysts are the only option capable of achieving efficient generation of C^(2+)products.However,the continuous dynamic reconstruction of the catalyst causes great difficulty in understanding the structure-performance relationship of CO_(2)RR.In this review,we first discuss the mechanism of C^(2+)product generation.The structural factors promoting C^(2+)product generation are outlined,and the dynamic evolution of these structural factors is discussed.Furthermore,the effects of electrolyte and electrolysis conditions are reviewed in a vision of dynamic surface.Finally,further exploration of the reconstruction mechanism of Cu-based catalysts and the application of emerging robotic AI chemists are discussed. 展开更多
关键词 ELECTROCATALYSIS CO_(2)RR cu-based catalyst RECONSTRUCTION Multicarbon product Structural evolution
在线阅读 下载PDF
Optimization strategies for enhancing the stability of Cu-based catalysts
2
作者 Min Liu Chuyi Zhang +6 位作者 Yuzhe Ying Yanyi Zhao Zhuoya Zhao Yansong Jia Yubo Chen Jianfeng Shi Yang Li 《Materials Reports(Energy)》 2025年第3期24-39,共16页
Electrocatalytic carbon dioxide reduction(ECO_(2)RR)serves as a promising approach for converting CO_(2)into energy-dense fuels and high-value chemicals,garnering substantial interest across academic and industrial se... Electrocatalytic carbon dioxide reduction(ECO_(2)RR)serves as a promising approach for converting CO_(2)into energy-dense fuels and high-value chemicals,garnering substantial interest across academic and industrial sectors.Copper(Cu)-based electrocatalysts are widely acknowledged as highly effective for ECO_(2)RR,primarily due to their optimal adsorption energy for*CO.Nonetheless,significant challenges remain to be addressed in transitioning Cu-based catalysts from research settings to industrial applications,including the low stability and unavoidable side reactions.This article aims to i)systematically examine the deactivation mechanisms of Cu-based catalysts,including changes in valence states,surface poisoning,and restructuring(agglomeration,dissolution,Ostwald ripening);ii)provide a timely overview of cutting-edge strategies to enhance the stability of Cu-based catalysts,such as ligand effects,heteroatom doping,support optimization,size effect,and restructuring;iii)highlight critical areas and prospective development directions that warrant further exploration to expedite the industrial adoption of Cu-based catalysts in ECO_(2)RR. 展开更多
关键词 CO_(2)reduction Deactivation mechanism cu-based catalysts SELECTIVITY Optimization strategies
在线阅读 下载PDF
Advances in Cu-based catalysts for electroreduction of CO_(2) to C_(2)H_(4) in flow cells
3
作者 Yunxia Zhao Yunxin Dai Yunfei Bu 《Green Energy & Environment》 2025年第8期1648-1673,共26页
Global investment in ethylene(C_(2)H_(4))production via nonpetroleum pathways is rising,highlighting its growing importance in the energy and environmental sectors.The electroreduction of carbon dioxide(CO_(2))to C_(2... Global investment in ethylene(C_(2)H_(4))production via nonpetroleum pathways is rising,highlighting its growing importance in the energy and environmental sectors.The electroreduction of carbon dioxide(CO_(2))to C_(2)H_(4) inflow cells is emerging as a promising technology with broad practical applications.Direct delivery of gaseous CO_(2) to the cathode catalyst layer overcomes mass transfer limitations,enhancing reaction rates and enabling high current density.This review summarizes recent research progress in the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR)for selective C_(2)H_(4) production inflow cells.It outlines the principles of eCO_(2)RR to C_(2)H_(4) and discusses the influence of copper-based catalyst morphology,crystal facet,oxidation state,surface modification strategy,and synergistic effects on catalytic performance.In addition,it highlights the compositional structure of theflow cell,and the selection and optimization of operating conditions,including gas diffusion electrodes,electrolytes,ion exchange membranes,and alternative anode reaction types beyond the oxygen evolution reaction.Finally,advances in machine learning are presented for accelerating catalyst screening and predicting dynamic changes in catalysts during reduction.This comprehensive review serves as a valuable reference for the development of efficient catalysts and the construction of electrolytic devices for the electrocatalytic reduction of CO_(2) to C_(2)H_(4). 展开更多
关键词 eCO_(2)RR C_(2)H_(4) Flow cell cu-based catalysts C-C coupling
在线阅读 下载PDF
Preparation and characterization of ultrafine Fe-Cu-based catalysts for CO hydrogenation 被引量:4
4
作者 Yunlai Su Yingli Wang Zhongmin Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期327-331,共5页
The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)... The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively. 展开更多
关键词 MICROEMULSION CONDUCTIVITY ultrafine Fe-cu-based catalyst CO hydrogenation
在线阅读 下载PDF
Popping of g-C_3N_4 mixed with cupric nitrate: Facile synthesis of Cu-based catalyst for construction of C-N bond 被引量:1
5
作者 Shaoyu Yuan Penglei Cui +3 位作者 Yunrui Zhang Hong Zhang Li Huo Yongjun Gao 《Green Energy & Environment》 SCIE 2018年第4期368-374,共7页
A novel strategy to synthesize copper-based nanoparticles supported on carbon nitride(C3 N4) was developed by popping of mixture containing C3 N4 and cupric nitrate. Characterizations such as X-ray photoelectron spect... A novel strategy to synthesize copper-based nanoparticles supported on carbon nitride(C3 N4) was developed by popping of mixture containing C3 N4 and cupric nitrate. Characterizations such as X-ray photoelectron spectroscopy(XPS) and X-ray diffraction(XRD) indicate that the structure of g-C3 N4 maintained although a popping process occurred. High resolution transmission electronic microscopy(HRTEM) characterization illustrated that copper-based nanoparticles with diameter of < 1 nm were well distributed on g-C3 N4. This kind of copper catalyst exhibits high catalytic activity and selectivity in arylation of pyrazole, a simple and effect strategy to construct C-N bond in organic chemistry.According to the results of control experiments and characterizations, cuprous oxide should be the catalytic active phase in the supported coperbased catalyst. 展开更多
关键词 C-N coupling N-ARYLATION Carbon NITRIDE Catalysis COPPER-BASED catalyst
在线阅读 下载PDF
Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol 被引量:2
6
作者 Peipei Ai Huiqing Jin +2 位作者 Jie Li Xiaodong Wang Wei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期186-193,共8页
Dimethyl oxalate(DMO) hydrogenation is a crucial step in the coal to ethylene glycol(CTEG) process.Herein, Cu catalyst supported on fibrous mesoporous silica(Cu/FMS) was synthesized via liquid phase deposition techniq... Dimethyl oxalate(DMO) hydrogenation is a crucial step in the coal to ethylene glycol(CTEG) process.Herein, Cu catalyst supported on fibrous mesoporous silica(Cu/FMS) was synthesized via liquid phase deposition technique and applied for the DMO hydrogenation to EG. The catalyst exhibited a remarkable EG selectivity of 96.95% and maintained its activity without deactivation for 1000 h. Fibers of FMS support and liquid phase deposition technology cooperated to give high dispersion of Cu species in the Cu/FMS catalyst, resulting in a high Cu surface area. The formation of Si—O—Cu during catalyst preparation process increased the Cu^(+)/(Cu^(0)+ Cu^(+)) ratio and enhanced the thermal and valence stability of Cu species.The high Cu^(+) surface area and Cu stability(thermal and valence stability) of the Cu/FMS catalyst were key factors for achieving superior EG selectivity and ultra-high stability. 展开更多
关键词 Stability Cu^(+)surface area Fibrous mesoporous silica catalyst HYDROGENATION
在线阅读 下载PDF
Carbon Nano-tube Supported Cu-based Catalyst for Methanol Synthesis Developed by Xiamen University
7
《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2008年第4期44-44,共1页
The Chemistry and Chemical Engineering School of Xiamen University has successfully developed the multi-walled nanotube catalyst with small and uniform diameter and has mastered the corresponding technology for manufa... The Chemistry and Chemical Engineering School of Xiamen University has successfully developed the multi-walled nanotube catalyst with small and uniform diameter and has mastered the corresponding technology for manufacture of carbon nanotube. It is learned that this technology has been for the first time developed inside ;and has reached the internationally advanced level with some indicators commanding a globally leading position. 展开更多
关键词 cu-based catalyst Chemical Engineering SCHOOL China multi-walled
在线阅读 下载PDF
Understanding oxidation state of Cu-based catalysts for electrocatalytic CO_(2) reduction
8
作者 Ping Zhu Yuan-Chu Qin +7 位作者 Xin-Hao Cai Wen-Min Wang Ying Zhou Lin-Lin Zhou Peng-Hui Liu Lu Peng Wen-Long Wang Qian-Yuan Wu 《Journal of Materials Science & Technology》 2025年第15期1-24,共24页
Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance ... Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance of various catalysts by tuning their oxidation states,particularly for Cu-based catalysts that can reduce CO_(2) to multiple products.However,the oxidation state of copper(OSCu),especially Cu+,changes during the reaction process,posing significant challenges for both catalyst characterization and performance.In this review,the current understanding of the effect of oxidation states on product selectivity was first discussed.A comprehensive overview of in situ/operando characterization techniques,used to monitor the dynamic evolution of oxidation states during ECR,was then provided.Various strategies for stabilizing oxidation states through modification of catalysts and manipulation of external conditions were discussed.This review aimed to deepen the understanding of oxidation states in ECR and enlighten the development of more efficient electrocatalysts. 展开更多
关键词 Electrocatalytic CO_(2)reduction cu-based catalysts Oxidation state In situ/operando characterization techniques Stabilization strategies
原文传递
Dynamic regulation of Cu-based catalysts for electrocatalytic CO_(2)reduction:Design strategies,mechanism analysis,and industrial challenges
9
作者 Xudong Hu Shimin Liu +5 位作者 Usman Farooq Izaz ul Islam Shuang Li Xiaolian Zhao Jun Long Xinhai Wang 《Nano Research》 2025年第9期391-413,共23页
Driven by the goal of global carbon neutrality,electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)technology has become a research hotspot due to its potential to efficiently convert CO_(2)into high value-ad... Driven by the goal of global carbon neutrality,electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)technology has become a research hotspot due to its potential to efficiently convert CO_(2)into high value-added products,such as ethylene and ethanol.Cu-based catalysts become the core material under their unique electronic structure and C–C coupling ability.It is precisely designed by single atomic sites(SACs)and diatomic site catalysts(DASCs).Combined with the stabilizing effect of composite carriers(such as metal–organic framework(MOF)materials)on the Cu active site,the product selectivity and reaction kinetics were significantly improved.In situ characterization and computational simulation revealed the dynamic reconfiguration of Cu sites and the adsorption mechanism of*CO intermediates.This result confirms that low-coordination Cu sites promote C–C coupling through the Eley–Rideal(ER)pathway,and high-pressure/high-temperature conditions can regulate the reaction path.Despite outstanding laboratory performance,industrial applications still face low stability at high current densities,high-scale preparation costs,and system integration challenges.In the future,it is necessary to focus on the analysis of atomic-level reaction mechanisms,the development of intelligent response materials,and the coupling technology of photoelectric and electrocatalysis,combined with green power matching and carbon tax policy coordination,to promote the leapfrog development of copper-based catalysts from basic research to industrial carbon cycle technology. 展开更多
关键词 electrocatalytic carbon dioxide reduction cu-based catalysts precise design dynamic reconfiguration industrial carbon cycle technology
原文传递
Advances in CO_(2)electroreduction to ethylene over Cu-based catalysts in membrane electrode assembly
10
作者 Wanyu Zhou Xueyan Li +8 位作者 Xiaoyue Tu Hongyan Zhao Qinglin Li Zhicheng Liu Deshuai Sun Xiangjian Liu Minghua Huang Jiawei Zhu Heqing Jiang 《Nano Research》 2025年第9期368-390,共23页
The electrochemical CO_(2)reduction reaction(CO_(2)RR)is a promising approach for converting CO_(2)into valuable chemicals and promoting carbon cycling.Among the products of CO_(2)RR,ethylene(C_(2)H_(4)),as a crucial ... The electrochemical CO_(2)reduction reaction(CO_(2)RR)is a promising approach for converting CO_(2)into valuable chemicals and promoting carbon cycling.Among the products of CO_(2)RR,ethylene(C_(2)H_(4)),as a crucial chemical feedstock,holds significant market demand and economic value.The design of an electrolyte-free cathode in membrane electrode assemblies(MEAs)can effectively mitigate mass transfer limitations,reduce ohmic losses,and enhance interfacial efficiency,thereby significantly improving current density and product selectivity.The integration of copper-based catalysts into MEAs is considered a promising strategy for the industrial-scale production of C_(2)H_(4) via CO_(2)RR.However,comprehensive reviews on the application of copper-based catalysts in MEAs for CO_(2)RR to C_(2)H_(4)remain limited,particularly regarding systematic analyses of catalyst design strategies,optimization of MEA components and operating conditions,and MEA device configurations.This review systematically summarizes the latest research progress on copper-based catalysts in MEAs for CO_(2)RR to C_(2)H_(4).Firstly,the reaction mechanism of CO_(2)RR to C_(2)H_(4) was summarized and the role of intermediate adsorption regulation was highlighted in MEA systems.Secondly,strategies applied to optimize ethylene production using copper-based catalysts in MEAs were also summarized accordingly.Next,the influence of components,operational conditions,and device design for MEA was discussed.Finally,the opportunities and challenges of using copper-based catalysts in MEAs for C_(2)H_(4)production were outlined.This review aims to provide insights and inspire further research efforts toward optimizing the performance of CO_(2)RR to C_(2)H_(4)in MEAs. 展开更多
关键词 membrane electrode assembly electrochemical CO_(2)reduction reaction cu-based catalysts ETHYLENE
原文传递
Tuning the interfacial reaction environment via pH-dependent and induced ions to understand C–N bonds coupling performance in NO_(3)-integrated CO_(2)reduction to carbon and nitrogen compounds over dual Cu-based N-doped carbon catalyst
11
作者 Tianhang Zhou Chen Shen +2 位作者 Zhenghao Wu Xingying Lan Yi Xiao 《Journal of Energy Chemistry》 2025年第1期273-285,共13页
Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,... Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions. 展开更多
关键词 pH-dependent micro-environments C-N coupling N-integrated CO_(2)RR Dual cu-based nitrogen carbon catalysts Explicit solvation model lon stabilizer AIMD
在线阅读 下载PDF
Rational design strategies of Cu-based electrocatalysts for CO_(2) electroreduction to C_(2) products 被引量:6
12
作者 Shuo Liu Baoshan Zhang +1 位作者 Lihong Zhang Jie Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期63-82,I0003,共21页
Electrochemical reduction of CO_(2)(CO_(2)RR)to high value-added chemicals is an effective way to remove excess CO_(2) from the atmosphere.Due to the unique propensity of Cu for valuable hydrocarbons,Cu-based electroc... Electrochemical reduction of CO_(2)(CO_(2)RR)to high value-added chemicals is an effective way to remove excess CO_(2) from the atmosphere.Due to the unique propensity of Cu for valuable hydrocarbons,Cu-based electrocatalysts are the most potential catalysts that allow the conversion of CO_(2) into a variety of C_(2) products such as ethylene and ethanol.Rational design of Cu-based catalysts can improve their directional selectivity to C_(2) products.Hence,in this review,we summarize the recent progress in the mechanistic studies of Cu-based catalysts on reducing CO_(2) to C_(2) products.We focus on three key strategies for efficiently enhancing electrocatalytic performance of Cu-based catalysts,including tuning electronic structure,surface structure,and coordination environment.The correlation between the structural characteristics of Cu-based catalysts and their activity and selectivity to C_(2) products is discussed.Finally,we discuss the challenges in the field of CO_(2) electroreduction to C_(2) products and provide the perspectives to design efficient Cu-based catalysts in the future. 展开更多
关键词 Carbon dioxide cu-based catalysts MECHANISMS Active site regulation
在线阅读 下载PDF
Cu-based materials for electrocatalytic CO_(2) to alcohols:Reaction mechanism,catalyst categories,and regulation strategies 被引量:1
13
作者 Yaru Lei Yaxin Niu +8 位作者 Xiaolong Tang Xiangtao Yu Xiubing Huang Xiaoqiu Lin Honghong Yi Shunzheng Zhao Jiaying Jiang Jiyue Zhang Fengyu Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期593-611,I0013,共20页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols. 展开更多
关键词 Electrocatalytic CO_(2)RR cu-based catalyst ALCOHOLS Reaction mechanism Regulation strategies
在线阅读 下载PDF
Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO_(2)reduction reaction 被引量:3
14
作者 Chunyang Yin Qing Li +6 位作者 Jun Zheng Yaqiong Ni Huiqiong Wu Anna-Lena Kjøniksen Chuntai Liu Yongpeng Lei Yi Zhang 《Advanced Powder Materials》 2022年第4期76-87,共12页
To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products hav... To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products have been gaining increasing interest.Cu-based CO_(2)reduction catalysts have attracted widespread attention owing to their capability of generating C1 and C_(2+)products.However,Cu-based catalysts are highly challenged by their low product selectivity.Recently,Cu-based bimetallic catalysts have been found the unique catalytical activity and selectivity in CO_(2)reduction reactions(CO_(2)RR).The incorporation of other metals can change the electronic circumstance of Cu-based catalysts,promoting the adsorption ability of the intermediate products and consequently leading to high selectivity.In this minireview,we intend to summarize recent advances of Cu-based bimetallic catalysts in producing C1 and C_(2+)products,involving designing heterostructure,alloy,defects and surface modification engineering.We pay special attention to the regulation of electronic structure of the composite catalysts,as well as insights into the relationship between electronic property and catalytical performance for Cu-based bimetallic catalysts. 展开更多
关键词 cu-based catalyst CO_(2) RRC_(2+)products Electronic structure regulation Intermetallic synergy
在线阅读 下载PDF
Electrolyte manipulation on Cu-based electrocatalysts for electrochemical CO_(2) reduction
15
作者 Hexin Zhou Wanlong Xi +4 位作者 Peng Yang Huiting Huang Jia Tian Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期201-222,共22页
Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of... Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of how specific electrolyte influences Cu-based catalysts is lacking.This review addresses this gap by focusing on how electrolytes impact surface reconstruction and the CO_(2) reduction process on Cu-based electrocatalysts,identifying specific electrolyte compositions that enhance the density and stability of active sites,and providing insights into how different electrolyte environments modulate the selectivity and efficiency of C_(2+)product formation.The review begins by exploring how electrolytes induce favorable surface reconstruction in Cu-based catalysts,affecting surface roughness through dissolution-redeposition of Cu species and interactions with halogens and molecular additives.It also covers changes in crystalline facets of Cu and Cu_(2)O,and oxidation states,highlighting transitions from Cu^(0) to Cu^(δ+)and the stabilization of Cu^(+).The role of electrolytes in the C–C coupling process is examined,emphasizing their effects in modulating mass and charge transfer,CO_(2) adsorption,intermediate evolution,and product desorption.Subsequently,the mechanisms by non-aqueous electrolytes,including organic solvents,ionic liquids,and mixed electrolytes,affecting CO_(2) reduction are analyzed,highlighting the unique advantages and challenges of each type.The review concludes by addressing current challenges,proposing solutions,and research directions,such as optimizing electrolyte composition by integrating diverse cations and anions and employing advanced in-situ characterization techniques.These insights can significantly enhance CO_(2)reduction performance on Cu-based electrocatalysts,advancing efficient and sustainable green energy technologies. 展开更多
关键词 CO_(2)reduction reaction cu-based catalyst ELECTROLYTE Surface reconstruction Intermediates evolution
在线阅读 下载PDF
The newly-assisted catalytic mechanism of surface hydroxyl species performed as the promoter in syngas-to-C2 species on the Cu-based bimetallic catalysts
16
作者 Chenyang Li Yuan Zhang +4 位作者 Debao Li Baojun Wang Christopher K.Russell Maohong Fan Riguang Zhang 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期487-498,共12页
In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally a... In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally accepted as the hydrogenating reactive species.This work for the first time proposed and confirmed the assisted catalytic mechanism of surface OH species that performed as the promoter for syngas-to-C_(2)species on Cu-based catalysts.DFT and microkinetic modeling results reveal that the produced OH species accompanying the intermediates CH_(x)production on the MCu(M=Co,Fe,Rh)catalysts can stably exist to form OH/MCu catalysts,on which the presence of surface OH species as the promoter not only presented better activity and selectivity toward CH_(x)(x=1-3)compared to MCu catalysts,but also significantly suppressed CH_(3)OH production,providing enough CH_(x)sources to favor the production of C_(2)hydrocarbons and oxygenates.Correspondingly,the electronic properties analysis revealed the essential relationship between the electronic feature of OH/MCu catalysts and catalytic performance,attributing to the unique electronic micro-environment of the catalysts under the interaction of surface OH species.This new mechanism is called as OH-assisted catalytic mechanism,which may be applied in the reaction systems related to the generation of OH species. 展开更多
关键词 Syngas conversion C_(2)species cu-based catalyst Surface OH species Assisted catalytic mechanism
在线阅读 下载PDF
One-dimensional Cu-based catalysts with layered Cu-Cu20-CuO walls for the Rochow reaction 被引量:5
17
作者 Jing Li Zailei Zhang +4 位作者 Yongjun Ji Zheying Jin Shanying Zou Ziyi Zhong Fabing Su 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1377-1392,共16页
A series of copper catalysts with a core-shell or tubular structure containing various contents of Cu, Cu2O, and CuO were prepared via controlled oxidation of Cu nanowires (NWs) and used in the synthesis of dimethyl... A series of copper catalysts with a core-shell or tubular structure containing various contents of Cu, Cu2O, and CuO were prepared via controlled oxidation of Cu nanowires (NWs) and used in the synthesis of dimethyldichlorosilane (M2) via the Rochow reaction. The Cu NWs were prepared from copper (Ⅱ) nitrate using a solution-based reduction method. The samples were characterized by X-ray diffraction, thermogravimetric analysis, temperature-programmed reduction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. It was found that the morphology and composition of the catalysts could be tailored by varying the oxidation temperature and time. During the gradual oxidation of Cu NWs, the oxidation reaction inflated on the outer surface and gradually developed into the bulk of the NWs, leading to the formation of catalysts with various structures and layered compositions, e.g., Cu NWs with surface Cu2O, ternary Cu-Cu2O-CuO core-shell NWs, binary Cu2O-CuO nanotubes (NTs), and single CuO NTs. Among these catalysts, ternary Cu-Cu2O-CuO core-shell NWs exhibited superior M2 selectivity and Si conversion in the Rochow reaction. The enhanced catalytic performance was mainly attributed to improved mass and heat transfer resulting from the peculiar heterostructure and the synergistic effect among layered components. Our work indicated that the catalytic property of Cu-based nanoparticles can be improved by carefully controlling their structures and compositions. 展开更多
关键词 controlled oxidation NANOWIRES core-shell structure NANOTUBES copper-based catalysts Rochow reaction
原文传递
Recent advances in Cu-based nanocomposite photocatalysts for CO_2 conversion to solar fuels 被引量:3
18
作者 Huan Xie Jingyun Wang +2 位作者 Kemakorn Ithisuphalap Gang Wu Qing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1039-1049,共11页
COconversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of COt... COconversion via photocatalysis is a potential solution to address global warming and energy shortage.Photocatalysis can directly utilize the inexhaustible sunlight as an energy source to catalyze the reduction of COto useful solar fuels such as CO, CH, CHOH, and CHOH. Among studied formulations, Cubased photocatalysts are the most attractive for COconversion because the Cu-based photocatalysts are low-cost and abundance comparing noble metal-based catalysts. In this literature review, a comprehensive summary of recent progress on Cu-based photocatalysts for COconversion, which includes metallic copper, copper alloy nanoparticles(NPs), copper oxides, and copper sulfides photocatalysts, can be found. This review also included a detailed discussion on the correlations of morphology, structure, and performance for each type of Cu-based catalysts. The reaction mechanisms and possible pathways for productions of various solar fuels were analyzed, which provide insight into the nature of potential active sites for the catalysts. Finally, the current challenges and perspective future research directions were outlined, holding promise to advance Cu-based photocatalysts for COconversion with much-enhanced energy conversion efficiency and production rates. 展开更多
关键词 cu-based photocatalyst CO_2 conversion Solar light Solar fuels Quantum efficiency
在线阅读 下载PDF
Accelerated prediction of Cu-based single-atom alloy catalysts for CO_(2) reduction by machine learning 被引量:2
19
作者 Dashuai Wang Runfeng Cao +5 位作者 Shaogang Hao Chen Liang Guangyong Chen Pengfei Chen Yang Li Xiaolong Zou 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期820-830,共11页
Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amo... Various strategies,including controls of morphology,oxidation state,defect,and doping,have been developed to improve the performance of Cu-based catalysts for CO_(2) reduction reaction(CO_(2)RR),generating a large amount of data.However,a unified understanding of underlying mechanism for further optimization is still lacking.In this work,combining first-principles calculations and machine learning(ML)techniques,we elucidate critical factors influencing the catalytic properties,taking Cu-based single atom alloys(SAAs)as examples.Our method relies on high-throughput calculations of 2669 CO adsorption configurations on 43 types of Cu-based SAAs with various surfaces.Extensive ML analyses reveal that low generalized coordination numbers and valence electron number are key features to determine catalytic performance.Applying our ML model with cross-group learning scheme,we demonstrate the model generalizes well between Cu-based SAAs with different alloying elements.Further,electronic structure calculations suggest surface negative center could enhance CO adsorption by back donating electrons to antibonding orbitals of CO.Finally,several SAAs,including PCu,AgCu,GaCu,ZnCu,SnCu,GeCu,InCu,and SiCu,are identified as promising CO_(2)RR catalysts.Our work provides a paradigm for the rational design and fast screening of SAAs for various electrocatalytic reactions. 展开更多
关键词 cu-based single-atom alloy CO adsorption Machine learning First principles CO_(2)reduction reaction
在线阅读 下载PDF
NiCu-based catalysts for the low-temperature hydrodeoxygenation of anisole:Effect of the metal ratio on SiO_(2)andγ-Al_(2)O_(3)supports 被引量:4
20
作者 Tom Vandevyvere Maarten K.Sabbe +2 位作者 Pedro S.F.Mendes Joris W.Thybaut Jeroen Lauwaert 《Green Carbon》 2023年第2期170-184,共15页
The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported cataly... The effects of the metal ratio of NiCu catalysts on the low-temperature hydrodeoxygenation(HDO)of anisole were assessed on a neutral SiO_(2) and an acidicγ-Al_(2)O_(3) support.The activity of SiO_(2)-supported catalysts increases with the Ni content in the NiCu phase,related to Ni’s hydrogenation capacity.In contrast,on aγ-Al_(2)O_(3) support,the activity decreases with the Ni content.Overall,Al_(2)O_(3)-supported catalysts,exhibiting a smaller NiCu alloy particle size,are more active than SiO_(2)-supported ones.In terms of selectivity,SiO_(2)-supported catalysts mainly hydrogenate anisole to methoxycyclohexane,while,particularly at higher conversions,γ-Al_(2)O_(3)-supported catalysts are able to further convert methoxycyclohexane to cyclohexane,demonstrating the importance of acid sites for low-temperature HDO.The Ni/Cu ratio also steers the selectivity,but not the catalyst stability.Deactivation phenomena are only support dependent:while on SiO_(2)-supported catalysts,active site sintering occurs,attributed to weak stabilization of metal particles by the support,acid catalyzed coking is the main cause of deactivation on theγ-Al_(2)O_(3)-supported catalysts. 展开更多
关键词 BIO-OIL Pyrolysis-oil ANISOLE HYDRODEOXYGENATION Bimetallic catalyst
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部