期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of Electrical Current on the Tribological Behavior of the Cu-WS_2-G Composites in Air and Vacuum 被引量:9
1
作者 QIAN Gang FENG Yi +3 位作者 LI Bin HUANG Shiyin LIU Hongjuan DING Kewang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期384-392,共9页
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments ... As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite. 展开更多
关键词 cu-ws2-G composites electrical current air and vacuum environments friction and wear contact voltage drop
在线阅读 下载PDF
Effect of WS_2 particle size on mechanical properties and tribological behaviors of Cu-WS_2 composites sintered by SPS 被引量:4
2
作者 Jin ZHOU Chao MA +2 位作者 Xiao KANG Lei ZHANG Xin-li LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第6期1176-1185,共10页
The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were inve... The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were investigated. The results indicate that the bending strength and tribological behavior of Cu-WS2 composites are greatly affected by the size of WS2 particles. The bending strength of Cu-WS2 composites with the WS2 particle size of 5.0 μm is 292.2 MPa. As the size of WS2 particle decreases to 0.6 μm, the bending strength also decreases to 181.5 MPa. Moreover, as the WS2 particle size decreases from 5.0 to 0.6 μm, the wear rate of Cu-WS2 composite sharply increases from 2.99×10^-14 to 6.13×10^-14 m^3/(N·m) and its friction coefficient increases from 0.158 to 0.172. The size of WS2 particle(5.0 μm) plays an important role in forming transfer film formed on the counter-face. The sample with 5.0 μm WS2 particle forms smoother and more continuous transfer film, which results in a low wear rate and friction coefficient of the Cu-WS2 composites. 展开更多
关键词 cu-ws2 composites mechanical properties wear rate friction coefficient continuous transfer film spark plasma sintering
在线阅读 下载PDF
Effect of current polarity on electrical sliding wear behavior of Cu-WS_2-graphite-WS_2 nanotube composites in air and vacuum conditions 被引量:5
3
作者 QIAN Gang FENG Yi +3 位作者 CHEN FanYan LIU WenHong ZHANG XueBin LIU YanFang 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第11期2839-2846,共8页
In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investiga... In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investigated using a brush-on-slip ring tribometer rubbing against Cu-5 wt.%Ag alloy ring in air and vacuum,respectively.The worn surfaces of the composites were analyzed by scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).Surface profile curves of the worn tracks were measured using the surface profiler.The results demonstrated that the current polarity has a significant effect on the wear rates and contact voltage drops of the composites in both air and vacuum conditions.Positive brush possesses a higher wear rate compared with the negative brush in the air atmosphere since the electrical field direction activates oxidation at the positive brush surface while inhibits oxidation at the negative brush surface.Except for the regular wear losses,the combined effect of molten metal bridge erosion and arc erosion cause the positive brush to lose extra material and the negative brush to gain extra material,so the positive brush shows a higher wear rate in the vacuum condition.The contact voltage drop of the positive brush is lower than that of the negative brush in the air atmosphere,but contrarily,the positive brush shows a higher contact voltage drop in the vacuum condition. 展开更多
关键词 cu-ws2-graphite-ws2 nanotube composites current polarity air and vacuum conditions wear rate contact voltage drop
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部