As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments ...As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.展开更多
The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were inve...The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were investigated. The results indicate that the bending strength and tribological behavior of Cu-WS2 composites are greatly affected by the size of WS2 particles. The bending strength of Cu-WS2 composites with the WS2 particle size of 5.0 μm is 292.2 MPa. As the size of WS2 particle decreases to 0.6 μm, the bending strength also decreases to 181.5 MPa. Moreover, as the WS2 particle size decreases from 5.0 to 0.6 μm, the wear rate of Cu-WS2 composite sharply increases from 2.99×10^-14 to 6.13×10^-14 m^3/(N·m) and its friction coefficient increases from 0.158 to 0.172. The size of WS2 particle(5.0 μm) plays an important role in forming transfer film formed on the counter-face. The sample with 5.0 μm WS2 particle forms smoother and more continuous transfer film, which results in a low wear rate and friction coefficient of the Cu-WS2 composites.展开更多
In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investiga...In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investigated using a brush-on-slip ring tribometer rubbing against Cu-5 wt.%Ag alloy ring in air and vacuum,respectively.The worn surfaces of the composites were analyzed by scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).Surface profile curves of the worn tracks were measured using the surface profiler.The results demonstrated that the current polarity has a significant effect on the wear rates and contact voltage drops of the composites in both air and vacuum conditions.Positive brush possesses a higher wear rate compared with the negative brush in the air atmosphere since the electrical field direction activates oxidation at the positive brush surface while inhibits oxidation at the negative brush surface.Except for the regular wear losses,the combined effect of molten metal bridge erosion and arc erosion cause the positive brush to lose extra material and the negative brush to gain extra material,so the positive brush shows a higher wear rate in the vacuum condition.The contact voltage drop of the positive brush is lower than that of the negative brush in the air atmosphere,but contrarily,the positive brush shows a higher contact voltage drop in the vacuum condition.展开更多
基金supported by Major Research Program of National Natural Science Foundation of China(Grant No. 91026018)National Natural Science Foundation of China(Grant No. 60979017)Doctoral Fund of Ministry of Education of China(Grant No. 20110111110015)
文摘As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.
基金Projects(51674304,51604305)supported by the National Natural Science Foundation of ChinaProject(2016M592445)supported by the China Postdoctoral Science Foundation
文摘The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were investigated. The results indicate that the bending strength and tribological behavior of Cu-WS2 composites are greatly affected by the size of WS2 particles. The bending strength of Cu-WS2 composites with the WS2 particle size of 5.0 μm is 292.2 MPa. As the size of WS2 particle decreases to 0.6 μm, the bending strength also decreases to 181.5 MPa. Moreover, as the WS2 particle size decreases from 5.0 to 0.6 μm, the wear rate of Cu-WS2 composite sharply increases from 2.99×10^-14 to 6.13×10^-14 m^3/(N·m) and its friction coefficient increases from 0.158 to 0.172. The size of WS2 particle(5.0 μm) plays an important role in forming transfer film formed on the counter-face. The sample with 5.0 μm WS2 particle forms smoother and more continuous transfer film, which results in a low wear rate and friction coefficient of the Cu-WS2 composites.
基金supported by the Major Research Program of the National Natural Science Foundation of China(Grant No.91026018)the National Natural Science Foundation of China(Grant No.60979017)the Doctoral Fund of Ministry of Education of China(Grant No.20110111110015)
文摘In this paper Cu-WS2-graphite-WS2nanotube composites were fabricated by powder metallurgy hot pressing method.The effect of current polarity on the wear rates and contact voltage drops of the composites were investigated using a brush-on-slip ring tribometer rubbing against Cu-5 wt.%Ag alloy ring in air and vacuum,respectively.The worn surfaces of the composites were analyzed by scanning electron microscopy(SEM)and X-ray photoelectron spectroscopy(XPS).Surface profile curves of the worn tracks were measured using the surface profiler.The results demonstrated that the current polarity has a significant effect on the wear rates and contact voltage drops of the composites in both air and vacuum conditions.Positive brush possesses a higher wear rate compared with the negative brush in the air atmosphere since the electrical field direction activates oxidation at the positive brush surface while inhibits oxidation at the negative brush surface.Except for the regular wear losses,the combined effect of molten metal bridge erosion and arc erosion cause the positive brush to lose extra material and the negative brush to gain extra material,so the positive brush shows a higher wear rate in the vacuum condition.The contact voltage drop of the positive brush is lower than that of the negative brush in the air atmosphere,but contrarily,the positive brush shows a higher contact voltage drop in the vacuum condition.