In this paper,the as-cast Mg85Cu5Ni10 alloy and Mg85Cu5Ni10-x wt%CeO2(x=0,4,8)alloys were prepared successfully by vacuum induction smelting and ball milling.The microstructure,hydrogen absorption/desorption kinetics ...In this paper,the as-cast Mg85Cu5Ni10 alloy and Mg85Cu5Ni10-x wt%CeO2(x=0,4,8)alloys were prepared successfully by vacuum induction smelting and ball milling.The microstructure,hydrogen absorption/desorption kinetics and thermodynamics performances of the alloys were studied in detail.The results show that the Mg85Cu5Ni10 alloys with CeO2 additive have faster hydrogenation/dehydrogenation kinetics and better thermodynamic properties.The dehydrogenation activation energy is reduced to 81.211 kJ/mol from 119.142 by adding 8 wt%CeO2.CeO2 contributes to producing structural defects,nanocrystallines,grain boundaries,partial amorphous,lattice dislocations and cracks which are favorable to provide more hydrogen diffusion channels during hydriding/dehydriding process.Meanwhile,CeO2 additive weakens the bond energy of Mg-H.These micro structural changes caused by CeO2 additive improve the hydrogen storage performance of Mg85Cu5Ni10 markedly.展开更多
The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface...The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.展开更多
Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage prop...Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage properties of CeO 2 ZrO 2 solid solutions,comparison being made with unmodified CeO 2 ZrO 2 solid solutions.The results indicated that the addition of REO to CeO 2 ZrO 2 solid solutions obviously improved the oxygen storage properties of the three kinds of solid solutions calcinated at 773K.Except for Zr rich solid solutions,the modified CeO 2 ZrO 2 solid soltuions calcinated at 1173K show higher thermal stability and oxygen storage properties than unmodified solid solutions.展开更多
The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was ...The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was studied.As a result,CeO2/ACF shows a better catalysis than MNOx/ACF,which is not affected by the reaction temperature. NO conversion of 85% is reached with the 10%-CeO2/ACF catalyst at the whole temperature window.Furthermore,a series of MnOx-CeO2/ACF composite catalysts were studied.The results show that the loading method of catalyst affects its activity.展开更多
基金Project supported by the National Natural Science Foundation of China(51761032,51901105,51871125)。
文摘In this paper,the as-cast Mg85Cu5Ni10 alloy and Mg85Cu5Ni10-x wt%CeO2(x=0,4,8)alloys were prepared successfully by vacuum induction smelting and ball milling.The microstructure,hydrogen absorption/desorption kinetics and thermodynamics performances of the alloys were studied in detail.The results show that the Mg85Cu5Ni10 alloys with CeO2 additive have faster hydrogenation/dehydrogenation kinetics and better thermodynamic properties.The dehydrogenation activation energy is reduced to 81.211 kJ/mol from 119.142 by adding 8 wt%CeO2.CeO2 contributes to producing structural defects,nanocrystallines,grain boundaries,partial amorphous,lattice dislocations and cracks which are favorable to provide more hydrogen diffusion channels during hydriding/dehydriding process.Meanwhile,CeO2 additive weakens the bond energy of Mg-H.These micro structural changes caused by CeO2 additive improve the hydrogen storage performance of Mg85Cu5Ni10 markedly.
文摘The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.
文摘Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage properties of CeO 2 ZrO 2 solid solutions,comparison being made with unmodified CeO 2 ZrO 2 solid solutions.The results indicated that the addition of REO to CeO 2 ZrO 2 solid solutions obviously improved the oxygen storage properties of the three kinds of solid solutions calcinated at 773K.Except for Zr rich solid solutions,the modified CeO 2 ZrO 2 solid soltuions calcinated at 1173K show higher thermal stability and oxygen storage properties than unmodified solid solutions.
文摘The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was studied.As a result,CeO2/ACF shows a better catalysis than MNOx/ACF,which is not affected by the reaction temperature. NO conversion of 85% is reached with the 10%-CeO2/ACF catalyst at the whole temperature window.Furthermore,a series of MnOx-CeO2/ACF composite catalysts were studied.The results show that the loading method of catalyst affects its activity.