Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatin...Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatings were also studied. It was found that the deposition parameters have significant effect on the mechanical properties of the Cu-Bi coatings. The microhardness has been improved from HVso165 of Cu coating to HVs0 250 of Cu-Bi composite coating prepared at 50 mA/cm2 for 20 min. Correspondingly, wear resistance of the Cu-Bi composite coating has also been enhanced significantly.展开更多
The diagram of Ag-Cu-Bi system was constructed from the investigation of 12 internal sec- tions by DTA heating as well as cooling curves in an atmosphere of dry N_2.The composi- tion of ternary eutectic point melting ...The diagram of Ag-Cu-Bi system was constructed from the investigation of 12 internal sec- tions by DTA heating as well as cooling curves in an atmosphere of dry N_2.The composi- tion of ternary eutectic point melting at 258℃ lies in Ag(5.0)-Cu(0.5)-Bi(94.5) at.-%.The liquiduses of Ag-Cu,Ag-Bi and Cu-Bi binaries were reinvestigated.展开更多
Ag-Sn-Cu-Bi-Ni alloy was internally oxidized in air. The phase constitution,surface morphology and microstructure evolution of the alloy after internal oxidation were analyzed by X-ray diffractometry,optical microscop...Ag-Sn-Cu-Bi-Ni alloy was internally oxidized in air. The phase constitution,surface morphology and microstructure evolution of the alloy after internal oxidation were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy,respectively. The results show that the surface color of samples after internal oxidation is different from the different oxidation time and temperatures. The oxidation reaction firstly takes place on the grain boundaries. The microstructure developed on the initial stage of internal oxidation is fir-tree crystal texture. However,this texture structure disappears accompanied by grain growth and oxides forming during the prolonged oxidation. Finally,the oxide particles are uniformly dispersed in the silver matrix.展开更多
Elements(As,Bi)and(Cu,Fe)exhibiting two typical segregation behavior in liquid Sb alloys were selected as solute atoms for analysis.Ab initio molecular dynamics(AIMD)simulations were employed to study the molten Sb al...Elements(As,Bi)and(Cu,Fe)exhibiting two typical segregation behavior in liquid Sb alloys were selected as solute atoms for analysis.Ab initio molecular dynamics(AIMD)simulations were employed to study the molten Sb alloy at different temperatures.By analyzing its pair correlation function(PCF),bond pairs,bond angle distribution function(BADF),and Voronoi polyhedron(VP),the short-range order(SRO)of the alloy was investigated.In the Sb melt,the solute atoms Cu and Fe,which have smaller distribution coefficients,exhibit a stronger affinity for Sb than the solute atoms As and Bi,which have larger distribution coefficients.The BADF of As and Bi with larger distribution coefficients shows a lower probability of small-angle peaks compared to large-angle peaks,whereas the BADF of Cu and Fe with smaller distribution coefficients exhibits the opposite trend.The BADF reveals that Sb-As and Sb-Bi approach pure Sb melt,while Sb-Cu and Sb-Fe deviate significantly.Compared to Sb-Cu and Sb-Fe,the Sb-As and Sb-Bi systems exhibit more low-index bonds,suggesting weaker interactions and more disorder.The VP fractions around As and Bi atoms are lower than those around Cu and Fe,and the VP face distributions around As and Bi are more complex.There are differences in the VP around different solute atoms,primarily due to the varying bond pair fractions associated with each solute atom.Fe has the smallest diffusion coefficient,primarily due to its compact local structure.展开更多
基金Bright Sparks Unit,University Malaya for the financial support
文摘Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatings were also studied. It was found that the deposition parameters have significant effect on the mechanical properties of the Cu-Bi coatings. The microhardness has been improved from HVso165 of Cu coating to HVs0 250 of Cu-Bi composite coating prepared at 50 mA/cm2 for 20 min. Correspondingly, wear resistance of the Cu-Bi composite coating has also been enhanced significantly.
文摘The diagram of Ag-Cu-Bi system was constructed from the investigation of 12 internal sec- tions by DTA heating as well as cooling curves in an atmosphere of dry N_2.The composi- tion of ternary eutectic point melting at 258℃ lies in Ag(5.0)-Cu(0.5)-Bi(94.5) at.-%.The liquiduses of Ag-Cu,Ag-Bi and Cu-Bi binaries were reinvestigated.
基金Project (2006BAE03B03) supported by the Key Project of 11th Five-Year Plan of China
文摘Ag-Sn-Cu-Bi-Ni alloy was internally oxidized in air. The phase constitution,surface morphology and microstructure evolution of the alloy after internal oxidation were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy,respectively. The results show that the surface color of samples after internal oxidation is different from the different oxidation time and temperatures. The oxidation reaction firstly takes place on the grain boundaries. The microstructure developed on the initial stage of internal oxidation is fir-tree crystal texture. However,this texture structure disappears accompanied by grain growth and oxides forming during the prolonged oxidation. Finally,the oxide particles are uniformly dispersed in the silver matrix.
文摘Elements(As,Bi)and(Cu,Fe)exhibiting two typical segregation behavior in liquid Sb alloys were selected as solute atoms for analysis.Ab initio molecular dynamics(AIMD)simulations were employed to study the molten Sb alloy at different temperatures.By analyzing its pair correlation function(PCF),bond pairs,bond angle distribution function(BADF),and Voronoi polyhedron(VP),the short-range order(SRO)of the alloy was investigated.In the Sb melt,the solute atoms Cu and Fe,which have smaller distribution coefficients,exhibit a stronger affinity for Sb than the solute atoms As and Bi,which have larger distribution coefficients.The BADF of As and Bi with larger distribution coefficients shows a lower probability of small-angle peaks compared to large-angle peaks,whereas the BADF of Cu and Fe with smaller distribution coefficients exhibits the opposite trend.The BADF reveals that Sb-As and Sb-Bi approach pure Sb melt,while Sb-Cu and Sb-Fe deviate significantly.Compared to Sb-Cu and Sb-Fe,the Sb-As and Sb-Bi systems exhibit more low-index bonds,suggesting weaker interactions and more disorder.The VP fractions around As and Bi atoms are lower than those around Cu and Fe,and the VP face distributions around As and Bi are more complex.There are differences in the VP around different solute atoms,primarily due to the varying bond pair fractions associated with each solute atom.Fe has the smallest diffusion coefficient,primarily due to its compact local structure.