The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and spac...A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.展开更多
Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in d...Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).展开更多
A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the d...A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N20 chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10) 〈 CZA(CP) 〈 CZA(20) 〈 CZA(30); while the selectivity of MEK was increased in the order of CZA(CP) 〈 CZA(10) 〈 CZA(20) 〈CZA(30).展开更多
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.
基金Supported by the National Natural Science Foundation of China (20576060, 20606021), and the Specialized Research Fund for the Doctoral Program of Higher Education (20050003030).
文摘A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.
基金supported by the National Basic Research Program of China (No. 2011CB201404)the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO) of China
文摘Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).
基金supported by Science and Technology Development Project of Shandong Province. 2007GG3 WZ03018
文摘A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N20 chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10) 〈 CZA(CP) 〈 CZA(20) 〈 CZA(30); while the selectivity of MEK was increased in the order of CZA(CP) 〈 CZA(10) 〈 CZA(20) 〈CZA(30).