Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in...Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.展开更多
The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H...The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.展开更多
A cost-effective and sustainable noble-metal free catalyst system based on ubiquitously available Mn-Cu bimetallic oxides was served as efficient catalysts for furfural selective oxidation to furancarboxylic acid(FA)....A cost-effective and sustainable noble-metal free catalyst system based on ubiquitously available Mn-Cu bimetallic oxides was served as efficient catalysts for furfural selective oxidation to furancarboxylic acid(FA). Interestingly, Mn_(2)Cu_(1)O_(x)exhibited an excellent furfural conversion of 99% with quantitative selectivity toward FA. Especially, we demonstrate the significant weakening of the Mn-O bonds with the incorporation of CuO into the Mn-Cu oxides, resulting in an improved OLreactivity of Mn_(2)Cu_(1)O_(x), which brings about a higher catalytic activity for furfural oxidation. More importantly, Mn_(2)Cu_(1)O_(x)could exhibit YFA>90% over 5 cycles of reusability test. Through this study, the relationship between the morphology, surface chemistry, and catalytic activity of Mn-Cu bimetallic oxides are elucidated, providing a simple and environmentally friendly catalytic strategy and scientific basis for the development of Mn-Cu bimetallic oxides bioderived molecular aerobic oxidation materials.展开更多
The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still c...The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,we report a worm-liked PtCu nanocrystals dispersed on nitrogen-doped carbon hollow microspheres(Pt_(0.38)Cu_(0.62)/N-HCS).Benefiting from its structural and compositional advantages,the resulting Pt_(0.38)Cu_(0.62)/N-HCS catalyst delivers exceptional electrocatalytic activity for ORR,with a half-wave potential(E_(1/2))of 0.837 V,a mass activity of 0.672 A mgPt^(-1),and a Tafel slope of 50.66 mV dec^(-1),surpassing that of commercial Pt/C.Moreover,the Pt_(0.38)Cu_(0.62)/N-HCS follows the desired four-electron transfer mechanism throughout the ORR process,thereby displaying a high selectivity for direct reduction of O_(2)to H_(2)O.Remarkably,this catalyst also showcases high stability,with only a 25 mV drop in E_(1/2)after 10,000 cycles in an acidic electrolyte.Theoretical calculations elucidate the incorporation of Cu into Pt lattice induces compressive strain,which effectively tailors the d band center of Pt active sites and strengthens the surface chemisorption of O_(2)molecules on PtCu alloys.Consequently,the Pt_(0.38)Cu_(0.62)/N-HCS catalyst exhibits an improved ability to adsorb O_(2)molecules on its surface,accelerating the reaction kinetics of O_(2)conversion to*OOH.Additionally,Cu atoms,not only serving as sacrificial anode,undergo preferential oxidation during PEMFCs operation when compared to Pt,but also the stable Cu species in PtCu alloys contributes significantly to maintaining the strain effect,collectively enhancing both activity and durability.Overall,this research offers an effective and promising approach to enhance the activity and stability of Pt-based ORR electrocatalysts in PEMFCs.展开更多
The reduction of global carbon emissions and the achievement of carbon neutrality have become the focus of addressing climate change and global warming.Electrochemical CO_(2) reduction(CO_(2)RR),as a technology that c...The reduction of global carbon emissions and the achievement of carbon neutrality have become the focus of addressing climate change and global warming.Electrochemical CO_(2) reduction(CO_(2)RR),as a technology that can efficiently convert CO_(2) into value-added products,is receiving widespread attention.This article reviews the current research status of Cu/metal oxide heterostructures in the field of electrochemical reduction of CO_(2).The review first introduces the importance of electrochemical reduction of CO_(2) and the application potential of Cu/metal oxide heterostructures in this field.Subsequently,a comprehensive discussion is presented on the exploration of various Cu/metal oxide heterostructures and their corresponding structure-performance relationship,with particular emphasis on the catalysts'activity,selectivity,stability and the nature of active sites.Lastly,the review provides an overview of the current research challenges and future development trends in this field.展开更多
The aging process of pure copper precursors and copper-zinc binary precursorswere studied by XRD, TG-DTG and TPR techniques. The catalytic activity and stability of CuO/ZnOwere tested using fixed-bed flow reactor, and...The aging process of pure copper precursors and copper-zinc binary precursorswere studied by XRD, TG-DTG and TPR techniques. The catalytic activity and stability of CuO/ZnOwere tested using fixed-bed flow reactor, and the physical properties of the catalysts and Cuspecies were characterized with N_2 adsorption and N_2O passivation method, respectively. For theCu-Zn binary system prepared at the precipitating condition of pH=8.0 and temperature=80℃, theinitial phase was a mixture of copper nitrate hydroxide Cu_2(NO_3)(OH)_3, georgeite and hydrozinciteZn_5(CO_3)_2(OH)_6. By increasing the duration of its aging time, the phase of Cu_2(NO_3)(OH)_2first transited to georgeite, and then interdiffused into Zn_5(CO_3)_2(OH)_6 and resulted in two newphases: rosasite (Cu,Zn)_2CO_3(OH)_2 and au-richalcite (Zn,Cu)_5(CO_3)_2(OH)_6. The former phasewas much easier to be formed than the latter one, while the latter phase was more responsible forthe activity of methanol synthesis than the former one. It is found that the composition andstructure of the precursors altered obviously after the colour transition point. The experimentalresults showed that methanol synthesis is a structure-sensitive catalytic reaction.展开更多
Cuprous oxide(Cu2O)is an attractive material for photoelectrochemical(PEC)hydrogen production or photovoltaic application,because of its appropriate band gap,low material cost and non-toxic.In this paper,Cu2O films we...Cuprous oxide(Cu2O)is an attractive material for photoelectrochemical(PEC)hydrogen production or photovoltaic application,because of its appropriate band gap,low material cost and non-toxic.In this paper,Cu2O films were obtained by comproportionation in acid cupric sulfate solutions with varying concentrations of potassium nitrate.Photoelectrochemical and electrochemical experiments,such as zero-bias photocurrent responses,voltammograms,and Mott-Schottky measurements,show that the Cu2O films grown in low(≤0.75 mol dm^–3)and high(≥1.00 mol dm^–3)nitrate ion concentrations presented n-type and p-type conductivity,respectively.Open circuit potential and polarization behavior were monitored to investigate the mechanism of modulating conductivity type.Nitrate ions consume protons in the plating solution during comproportionation with different concentrations of nitrate ions creating different pH at the Cu2O/solution interface.This gradient leads to the transformation of Cu2Ofilms conductivity changing from n-type to p-type with increasing the concentration of nitrate ions in the plating solution.This method could be used to fabricate homojunction electrode on metal substrate for PEC hydrogen production or photoelectric application.展开更多
In this paper, we report photoelectrochemical(PEC) conversion of carbon dioxide(CO_2) using photocathodes based on Cu_2O nanowires(NWs) overcoated with Cu~+-incorporated crystalline TiO_2(TiO_2–Cu~+ )shell....In this paper, we report photoelectrochemical(PEC) conversion of carbon dioxide(CO_2) using photocathodes based on Cu_2O nanowires(NWs) overcoated with Cu~+-incorporated crystalline TiO_2(TiO_2–Cu~+ )shell. Cu_2O NW photocathodes show remanent photocurrent of 5.3% after 30 min of PEC reduction of CO_2.After coating Cu_2O with TiO_2–Cu~+ overlayer, the remanent photocurrent is 27.6%, which is an increase by5.2 fold. The charge transfer resistance of Cu_2O/TiO_2–Cu~+ is 0.423 k/cm2, whereas Cu_2O photocathode shows resistivity of 0.781 k/cm2 under irradiation. Mott–Schottky analysis reveals that Cu~+ species embedded in TiO_2 layer is responsible for enhanced adsorption of CO_2 on TiO_2 surface, as evidenced by the decrease of capacitance in the Helmholtz layer. On account of these electrochemical and electronic effects by the Cu~+ species, the Faradaic efficiency(FE) of photocathodes reaches as high as 56.5% when TiO_2–Cu~+ is added to Cu_2O, showing drastic increase from 23.6% by bare Cu_2O photocathodes.展开更多
A green protocol for the synthesis of quinoxalines has been developed from catalytic oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines in water.The optimal conditions are involved in the use of a water...A green protocol for the synthesis of quinoxalines has been developed from catalytic oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines in water.The optimal conditions are involved in the use of a water-soluble mononuclear copper(Ⅱ) complex of a zwitterionic calix[4]arene[Cu(Ⅱ)LCH2O)]I2(1,H4L=[5,ll,17,23-tetrakis(trimethylammonium)-25,26,27,28-tetrahydroxycalix[4]arene]) as a catalyst in alkali solution after refluxing for 15 h in O2.The target quinoxaline and its derivatives were obtained in good yields(up to 88%).The procedure described in this paper is simple,practical and environmentally benign.展开更多
In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and su...In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.展开更多
Via the first principles calculations, we predict that Cu doped graphene oxide (GO) is a much better nanocatalyst in terms of activity and feasibility. The high activity of Cu doped graphene oxides may be attributed...Via the first principles calculations, we predict that Cu doped graphene oxide (GO) is a much better nanocatalyst in terms of activity and feasibility. The high activity of Cu doped graphene oxides may be attributed to the charge transfer between the GO and Cu atom, resulting in an activated Cu atom. In the ER mechanism, the CO molecules directly react with the activated O2, then forming a metastable carbonate-like intermediate state (OOCO). The reaction may proceed via two reaction paths of OOCO → CO2 + O and CO + OOCO → 2CO2, respectively. The calculated results show that the latter path is relatively more thermodynamically favorable with a modest energy barrier, so it should be more preferred. We expect our theoretical predictions to open a new avenue to fabricate carbon-based catalysts for CO oxidation with lower cost and higher activity.展开更多
An intramolecular dehydrogenative homo-and hetero-coupling of phenols has been successfully developed for quick preparation of enantiopure axial diphenols under mild Cu(Ⅱ)-mediated conditions,using((4 S,5 S)-2,2-dime...An intramolecular dehydrogenative homo-and hetero-coupling of phenols has been successfully developed for quick preparation of enantiopure axial diphenols under mild Cu(Ⅱ)-mediated conditions,using((4 S,5 S)-2,2-dimethyl-1,3-dioxolane-4,5-diyl)dimethanol as the chiral auxiliary.The commercially available(R)-α-met hylbenzy la mine was identified as the best amine ligand for Cu(Ⅱ) in the reactions.A variety of homo/hetero bis-dihydroxylbenzoate substrates were examined,affording the corresponding axially chiral diphenols with satis factory to excellent diastereomeric ratios,and a representative scalable preparation was also attempted.A formal synthesis of natural product(+)-deoxyschizandrin has been achieved in this work using one axially chiral diphenol as the synthetic intermediate.展开更多
In this work,the sandwich joints were joined by low temperature pressureless sintering Ag paste.The morphology and thermal behavior of Ag nanoparticle paste was characterized and analyzed.The sintered Ag joints with d...In this work,the sandwich joints were joined by low temperature pressureless sintering Ag paste.The morphology and thermal behavior of Ag nanoparticle paste was characterized and analyzed.The sintered Ag joints with different metallization were prepared and tested.The joints with Ag metallization exhibited superior shear strength and interface bonding ratio.However,the joints with Cu metallization showed lowest shear strength and interface delamination.The interfacial microstructures were observed and the diffusion kinetics between Ag and Au atoms were both calculated.The excessive diffusion of Ag atoms towards the Au layer deteriorated the interface bonding ratio and shear strength.This work will help understand the bonding mechanism between sintered Ag and other metallization.展开更多
Although nanozyme has become an emerging area of research attracting extensive attention recently,the activity and specificity of currently reported nanozymes are generally lower than those of natural enzymes.Developi...Although nanozyme has become an emerging area of research attracting extensive attention recently,the activity and specificity of currently reported nanozymes are generally lower than those of natural enzymes.Developing highly active and specific nanozymes is therefore extremely necessary and also remains a great challenge.Superoxide dismutase(SOD)catalyzes the disproportionation of cytotoxic O_(2)·^(−)into hydrogen peroxide and oxygen,and plays an important role in reducing human oxidative stress.In this work,we prepare Cu single-atom catalysts(Cu/GO SACs,GO=graphene oxide)through a simple and low-cost strategy at room temperature using Cu foam and graphene oxide.Cu/GO SACs can maintain excellent catalytic activity under harsh environment.Compared with the natural enzyme,SOD-like Cu/GO SAC nanozyme has higher catalytic activity and meanwhile,it does not possess the common properties of other mimic enzymes often existing in nanomaterials.Based on the excellent SOD-like enzyme activity of Cu/GO SACs,it successfully eliminates the active oxygen in cigarette smoke.This work not only provides a new idea for the design and synthesis of nanozymes with excellent SOD mimetic properties,but also is promising in the treatment of lung injury and inflammatory diseases related to free radical production.展开更多
Lithium(Li)metal is the ultimate anode choice for next generation high energy density batteries.However,the high nucleation energy barrier and nonuniform electric field distribution,as well as huge volume expansion,le...Lithium(Li)metal is the ultimate anode choice for next generation high energy density batteries.However,the high nucleation energy barrier and nonuniform electric field distribution,as well as huge volume expansion,lead to the uncontrollable growth of Li dendrites and poor utilization of Li metal,which hinders its practical application.Herein,titanium dioxide/cuprous oxide(TiO_(2)/Cu_(2)O)heterostructure is constructed on the rimous skeleton of Cu mesh,and the heterostructure decorated rimous Cu mesh(H-CM)can act as both current collector and host for dendrite-free Li metal anode.The TiO_(2)/Cu_(2)O heterostructure realizes selective Li nucleation by nano TiO_(2)and then induces fast and uniform Li conduction with the aid of heterostructure interface and nano Cu_(2)O contributing to dendrite-free Li deposition.While the internal and external space of rimous skeletons in H-CM is used to accommodate the deposited Li and buffer its volume change.Therefore,the cycling reversibility of the derived Li metal anode in H-CM is improved to a high Coulombic efficiency of 98.8%for more than 350 cycles at a current density of 1 mA·cm−2,and 1,000 h(equals to 500 cycles)stable repeated Li plating/stripping can be operated in a symmetric cell.Furthermore,full cells with limited Li anode and high loading LiFePO4 cathode present excellent cycling and rate performances.展开更多
Electrochemical conversion of CO2 to hydrocarbons can relieve both environmental and energy stresses. However, electrocatalysts for this reaction usually suffer from a poor product selectivity and a large overpotentia...Electrochemical conversion of CO2 to hydrocarbons can relieve both environmental and energy stresses. However, electrocatalysts for this reaction usually suffer from a poor product selectivity and a large overpotential. Here we report that tunable catalytic selectivity for hydrocarbon formation could be achieved on Cu nanomaterials with different morphologies. By tuning the electrochemical parameters, either Cu oxide nanowires or nanoneedles were fabricated and then electrochemically reduced to the corresponding Cu nanomaterials. The Cu nanowires preferred the formation of C2H4, while the Cu nanoneedles favored the production of more CH4, rather than C2H4. Our work provides a facile synthetic strategy for preparing Cu-based nanomaterials to achieve selective CO2 reduction.展开更多
The south Gangdese region is the site of subduction of the Neo-Tethys and subsequent continental col- lision. Compared with widespread Cretaceous and Cenozoic magmatism, Early-Middle Jurassic magmatic rocks and relate...The south Gangdese region is the site of subduction of the Neo-Tethys and subsequent continental col- lision. Compared with widespread Cretaceous and Cenozoic magmatism, Early-Middle Jurassic magmatic rocks and related deposits are rarely reported, Our work identified a 〉200 km long felsic rock belt asso- ciated with Cu mineralization in the south Gangdese region. We report here zircon U-Pb ages, zircon Ce4+/Ce3+ values, and mineral assemblages of two Cu mineralized intrusions within the belt. A horn- blende granite and a diorite porphyry were emplaced at 177.3Ma and 166.3Ma, respectively. Geological occurrence and magmatic hematite-magnetite-chalcopyrite intergrowths suggest that Cu mineralization formed coeval with Jurassic intrusions. Mineralized intrusions have high zircon Ce4+/ Ce3+ and EuN/EuN ratios, and hematite-magnetite intergrowths, suggesting their parent magmas were highly oxidized, Hornblende is common and primary fluid inclusions are found in titanite and apatite, indicating their parent magmas were water-saturated and exsotved volatile phases at early stage of rnag- matic evolution. Those magma characters contribute to the formation of porphyry Cu deposits. Given that majority subduction-related porphyry Cu systems have been eroded following uplift and denudation, the well-preserved Early-Middle Jurassic cu mineralized igneous rocks in south Gangdese are favorable prospecting targets for subduction-related porphyry Cu deposits.展开更多
基金National Natural Science Foundation of China (52371228, 52402045)fund of Key Laboratory of Advanced Materials of Ministry of Education(Advmat-2414)。
文摘Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.
基金Supported by the National Natural Science Foundation of China(21277008,20777005)the Natural Science Foundation of Beijing(8082008)
文摘The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.
基金supported by the National Natural Science Fund of China (Nos. 21978246 and 21776234)。
文摘A cost-effective and sustainable noble-metal free catalyst system based on ubiquitously available Mn-Cu bimetallic oxides was served as efficient catalysts for furfural selective oxidation to furancarboxylic acid(FA). Interestingly, Mn_(2)Cu_(1)O_(x)exhibited an excellent furfural conversion of 99% with quantitative selectivity toward FA. Especially, we demonstrate the significant weakening of the Mn-O bonds with the incorporation of CuO into the Mn-Cu oxides, resulting in an improved OLreactivity of Mn_(2)Cu_(1)O_(x), which brings about a higher catalytic activity for furfural oxidation. More importantly, Mn_(2)Cu_(1)O_(x)could exhibit YFA>90% over 5 cycles of reusability test. Through this study, the relationship between the morphology, surface chemistry, and catalytic activity of Mn-Cu bimetallic oxides are elucidated, providing a simple and environmentally friendly catalytic strategy and scientific basis for the development of Mn-Cu bimetallic oxides bioderived molecular aerobic oxidation materials.
基金the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0557,cstb2023nscq-msx0979)+3 种基金Talent Introduction of Chongqing University of Science and Technology(ckrc2021050,ckrc20230401,ckrc2021053)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201532,KJQN202301542)the National Natural Science Foundation of China(22109016)Open Research Fund of CNMGE Platform&NSCC-TJ(CNMGE2023016).
文摘The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,we report a worm-liked PtCu nanocrystals dispersed on nitrogen-doped carbon hollow microspheres(Pt_(0.38)Cu_(0.62)/N-HCS).Benefiting from its structural and compositional advantages,the resulting Pt_(0.38)Cu_(0.62)/N-HCS catalyst delivers exceptional electrocatalytic activity for ORR,with a half-wave potential(E_(1/2))of 0.837 V,a mass activity of 0.672 A mgPt^(-1),and a Tafel slope of 50.66 mV dec^(-1),surpassing that of commercial Pt/C.Moreover,the Pt_(0.38)Cu_(0.62)/N-HCS follows the desired four-electron transfer mechanism throughout the ORR process,thereby displaying a high selectivity for direct reduction of O_(2)to H_(2)O.Remarkably,this catalyst also showcases high stability,with only a 25 mV drop in E_(1/2)after 10,000 cycles in an acidic electrolyte.Theoretical calculations elucidate the incorporation of Cu into Pt lattice induces compressive strain,which effectively tailors the d band center of Pt active sites and strengthens the surface chemisorption of O_(2)molecules on PtCu alloys.Consequently,the Pt_(0.38)Cu_(0.62)/N-HCS catalyst exhibits an improved ability to adsorb O_(2)molecules on its surface,accelerating the reaction kinetics of O_(2)conversion to*OOH.Additionally,Cu atoms,not only serving as sacrificial anode,undergo preferential oxidation during PEMFCs operation when compared to Pt,but also the stable Cu species in PtCu alloys contributes significantly to maintaining the strain effect,collectively enhancing both activity and durability.Overall,this research offers an effective and promising approach to enhance the activity and stability of Pt-based ORR electrocatalysts in PEMFCs.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_0120)the National Natural Science Foundation of China(Nos.22275088 and 52101260)+3 种基金the Project of Shuangchuang Scholar of Jiangsu Province(No.JSSCBS20210212)the Fundamental Research Funds for the Central Universities(No.30921011203)the Start-Up Grant(No.AE89991/340)from Nanjing University of Science and Technology,the Foundation of Jiangsu Educational Committee(No.22KJB310008)the Senior Talent Program of Jiangsu University(No.20JDG073).
文摘The reduction of global carbon emissions and the achievement of carbon neutrality have become the focus of addressing climate change and global warming.Electrochemical CO_(2) reduction(CO_(2)RR),as a technology that can efficiently convert CO_(2) into value-added products,is receiving widespread attention.This article reviews the current research status of Cu/metal oxide heterostructures in the field of electrochemical reduction of CO_(2).The review first introduces the importance of electrochemical reduction of CO_(2) and the application potential of Cu/metal oxide heterostructures in this field.Subsequently,a comprehensive discussion is presented on the exploration of various Cu/metal oxide heterostructures and their corresponding structure-performance relationship,with particular emphasis on the catalysts'activity,selectivity,stability and the nature of active sites.Lastly,the review provides an overview of the current research challenges and future development trends in this field.
文摘The aging process of pure copper precursors and copper-zinc binary precursorswere studied by XRD, TG-DTG and TPR techniques. The catalytic activity and stability of CuO/ZnOwere tested using fixed-bed flow reactor, and the physical properties of the catalysts and Cuspecies were characterized with N_2 adsorption and N_2O passivation method, respectively. For theCu-Zn binary system prepared at the precipitating condition of pH=8.0 and temperature=80℃, theinitial phase was a mixture of copper nitrate hydroxide Cu_2(NO_3)(OH)_3, georgeite and hydrozinciteZn_5(CO_3)_2(OH)_6. By increasing the duration of its aging time, the phase of Cu_2(NO_3)(OH)_2first transited to georgeite, and then interdiffused into Zn_5(CO_3)_2(OH)_6 and resulted in two newphases: rosasite (Cu,Zn)_2CO_3(OH)_2 and au-richalcite (Zn,Cu)_5(CO_3)_2(OH)_6. The former phasewas much easier to be formed than the latter one, while the latter phase was more responsible forthe activity of methanol synthesis than the former one. It is found that the composition andstructure of the precursors altered obviously after the colour transition point. The experimentalresults showed that methanol synthesis is a structure-sensitive catalytic reaction.
基金financially supported by the National Natural Science Foundation of China (No. 51302216 and 21375102)the Excellent Young Academic Backbone Program of the Northwest University+1 种基金the Open Fund of the State Key Laboratory of Multiphase Flow in Power Engineering of Chinathe Scientific Research Program funded by Shaanxi Provincial Education Department (No. 17JS121)
文摘Cuprous oxide(Cu2O)is an attractive material for photoelectrochemical(PEC)hydrogen production or photovoltaic application,because of its appropriate band gap,low material cost and non-toxic.In this paper,Cu2O films were obtained by comproportionation in acid cupric sulfate solutions with varying concentrations of potassium nitrate.Photoelectrochemical and electrochemical experiments,such as zero-bias photocurrent responses,voltammograms,and Mott-Schottky measurements,show that the Cu2O films grown in low(≤0.75 mol dm^–3)and high(≥1.00 mol dm^–3)nitrate ion concentrations presented n-type and p-type conductivity,respectively.Open circuit potential and polarization behavior were monitored to investigate the mechanism of modulating conductivity type.Nitrate ions consume protons in the plating solution during comproportionation with different concentrations of nitrate ions creating different pH at the Cu2O/solution interface.This gradient leads to the transformation of Cu2Ofilms conductivity changing from n-type to p-type with increasing the concentration of nitrate ions in the plating solution.This method could be used to fabricate homojunction electrode on metal substrate for PEC hydrogen production or photoelectric application.
基金supported by the National Research Foundation (NRF) grants funded by the Korean government (no.NRF-20110030256, NRF-2017R1A2B2011066 and NRF-2016M3A7B4910618)funded by the Saudi Aramco-KAIST CO2 Management Center
文摘In this paper, we report photoelectrochemical(PEC) conversion of carbon dioxide(CO_2) using photocathodes based on Cu_2O nanowires(NWs) overcoated with Cu~+-incorporated crystalline TiO_2(TiO_2–Cu~+ )shell. Cu_2O NW photocathodes show remanent photocurrent of 5.3% after 30 min of PEC reduction of CO_2.After coating Cu_2O with TiO_2–Cu~+ overlayer, the remanent photocurrent is 27.6%, which is an increase by5.2 fold. The charge transfer resistance of Cu_2O/TiO_2–Cu~+ is 0.423 k/cm2, whereas Cu_2O photocathode shows resistivity of 0.781 k/cm2 under irradiation. Mott–Schottky analysis reveals that Cu~+ species embedded in TiO_2 layer is responsible for enhanced adsorption of CO_2 on TiO_2 surface, as evidenced by the decrease of capacitance in the Helmholtz layer. On account of these electrochemical and electronic effects by the Cu~+ species, the Faradaic efficiency(FE) of photocathodes reaches as high as 56.5% when TiO_2–Cu~+ is added to Cu_2O, showing drastic increase from 23.6% by bare Cu_2O photocathodes.
基金the financial supports from the National Natural Science Foundation of China(Nos.21271134, 21373142,21531006 and 21671144)the State Key Laboratory of Organometallic Chemistry,Shanghai Institute of Organic Chemistry(No.2015kf-07)+2 种基金supports from the "333" Project of Jiangsu Provincethe Priority Academic Program Development of Jiangsu Higher Education Institutionsthe "SooChow Scholar" Program of Soochow University
文摘A green protocol for the synthesis of quinoxalines has been developed from catalytic oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines in water.The optimal conditions are involved in the use of a water-soluble mononuclear copper(Ⅱ) complex of a zwitterionic calix[4]arene[Cu(Ⅱ)LCH2O)]I2(1,H4L=[5,ll,17,23-tetrakis(trimethylammonium)-25,26,27,28-tetrahydroxycalix[4]arene]) as a catalyst in alkali solution after refluxing for 15 h in O2.The target quinoxaline and its derivatives were obtained in good yields(up to 88%).The procedure described in this paper is simple,practical and environmentally benign.
基金received from the National Natural Science Foundation of China(Nos.21522606,21676246,21476201,21436007,U1462201,and 21376216)supported by Zhejiang Provincial Natural Science Foundation of China(No.LR17B060003)Major Science and Technology Project of Water Pollution Control and Management(No.2017ZX07101)
文摘In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.
基金supported by the National Natural Science Foundation of China(No.21004009)the Foundation of Jiangxi Educational Committee(No.GJJ14485)
文摘Via the first principles calculations, we predict that Cu doped graphene oxide (GO) is a much better nanocatalyst in terms of activity and feasibility. The high activity of Cu doped graphene oxides may be attributed to the charge transfer between the GO and Cu atom, resulting in an activated Cu atom. In the ER mechanism, the CO molecules directly react with the activated O2, then forming a metastable carbonate-like intermediate state (OOCO). The reaction may proceed via two reaction paths of OOCO → CO2 + O and CO + OOCO → 2CO2, respectively. The calculated results show that the latter path is relatively more thermodynamically favorable with a modest energy barrier, so it should be more preferred. We expect our theoretical predictions to open a new avenue to fabricate carbon-based catalysts for CO oxidation with lower cost and higher activity.
基金Financial support by National Key Research and Development Program of China(No.2018YFC0310900)the National Natural Science Foundation of China(Nos.21472087,21532002,21901112,21778031,21761142001)Jiangsu Provincial Department of Science and Technology(No.BK20190277)is greatly appreciated。
文摘An intramolecular dehydrogenative homo-and hetero-coupling of phenols has been successfully developed for quick preparation of enantiopure axial diphenols under mild Cu(Ⅱ)-mediated conditions,using((4 S,5 S)-2,2-dimethyl-1,3-dioxolane-4,5-diyl)dimethanol as the chiral auxiliary.The commercially available(R)-α-met hylbenzy la mine was identified as the best amine ligand for Cu(Ⅱ) in the reactions.A variety of homo/hetero bis-dihydroxylbenzoate substrates were examined,affording the corresponding axially chiral diphenols with satis factory to excellent diastereomeric ratios,and a representative scalable preparation was also attempted.A formal synthesis of natural product(+)-deoxyschizandrin has been achieved in this work using one axially chiral diphenol as the synthetic intermediate.
基金supported by the Shenzhen Science and Technology innovation committee (Grant No. JCYJ.0180306172006392)。
文摘In this work,the sandwich joints were joined by low temperature pressureless sintering Ag paste.The morphology and thermal behavior of Ag nanoparticle paste was characterized and analyzed.The sintered Ag joints with different metallization were prepared and tested.The joints with Ag metallization exhibited superior shear strength and interface bonding ratio.However,the joints with Cu metallization showed lowest shear strength and interface delamination.The interfacial microstructures were observed and the diffusion kinetics between Ag and Au atoms were both calculated.The excessive diffusion of Ag atoms towards the Au layer deteriorated the interface bonding ratio and shear strength.This work will help understand the bonding mechanism between sintered Ag and other metallization.
基金supported by the National Natural Science Foundation of China(No.22074095)Beijing Municipal Natural Science Foundation(No.2222005)High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-Year Plan(No.CIT&TCD20190330).
文摘Although nanozyme has become an emerging area of research attracting extensive attention recently,the activity and specificity of currently reported nanozymes are generally lower than those of natural enzymes.Developing highly active and specific nanozymes is therefore extremely necessary and also remains a great challenge.Superoxide dismutase(SOD)catalyzes the disproportionation of cytotoxic O_(2)·^(−)into hydrogen peroxide and oxygen,and plays an important role in reducing human oxidative stress.In this work,we prepare Cu single-atom catalysts(Cu/GO SACs,GO=graphene oxide)through a simple and low-cost strategy at room temperature using Cu foam and graphene oxide.Cu/GO SACs can maintain excellent catalytic activity under harsh environment.Compared with the natural enzyme,SOD-like Cu/GO SAC nanozyme has higher catalytic activity and meanwhile,it does not possess the common properties of other mimic enzymes often existing in nanomaterials.Based on the excellent SOD-like enzyme activity of Cu/GO SACs,it successfully eliminates the active oxygen in cigarette smoke.This work not only provides a new idea for the design and synthesis of nanozymes with excellent SOD mimetic properties,but also is promising in the treatment of lung injury and inflammatory diseases related to free radical production.
基金supported by the National Natural Science Foundation of China(Nos.51872157 and 52072208)Fundamental Research Project of Shenzhen(No.JCYJ20190808153609561)+1 种基金Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)Support Plan for Shenzhen Manufacturing Innovation Center(No.20200627215553988).
文摘Lithium(Li)metal is the ultimate anode choice for next generation high energy density batteries.However,the high nucleation energy barrier and nonuniform electric field distribution,as well as huge volume expansion,lead to the uncontrollable growth of Li dendrites and poor utilization of Li metal,which hinders its practical application.Herein,titanium dioxide/cuprous oxide(TiO_(2)/Cu_(2)O)heterostructure is constructed on the rimous skeleton of Cu mesh,and the heterostructure decorated rimous Cu mesh(H-CM)can act as both current collector and host for dendrite-free Li metal anode.The TiO_(2)/Cu_(2)O heterostructure realizes selective Li nucleation by nano TiO_(2)and then induces fast and uniform Li conduction with the aid of heterostructure interface and nano Cu_(2)O contributing to dendrite-free Li deposition.While the internal and external space of rimous skeletons in H-CM is used to accommodate the deposited Li and buffer its volume change.Therefore,the cycling reversibility of the derived Li metal anode in H-CM is improved to a high Coulombic efficiency of 98.8%for more than 350 cycles at a current density of 1 mA·cm−2,and 1,000 h(equals to 500 cycles)stable repeated Li plating/stripping can be operated in a symmetric cell.Furthermore,full cells with limited Li anode and high loading LiFePO4 cathode present excellent cycling and rate performances.
文摘Electrochemical conversion of CO2 to hydrocarbons can relieve both environmental and energy stresses. However, electrocatalysts for this reaction usually suffer from a poor product selectivity and a large overpotential. Here we report that tunable catalytic selectivity for hydrocarbon formation could be achieved on Cu nanomaterials with different morphologies. By tuning the electrochemical parameters, either Cu oxide nanowires or nanoneedles were fabricated and then electrochemically reduced to the corresponding Cu nanomaterials. The Cu nanowires preferred the formation of C2H4, while the Cu nanoneedles favored the production of more CH4, rather than C2H4. Our work provides a facile synthetic strategy for preparing Cu-based nanomaterials to achieve selective CO2 reduction.
基金supported by Strategic Priority Research Program of Chinese Academy of Sciences(XDB03010302)the DREAM project of MOST,China(2016YFC0600407)a contribution No.IS-2396 from GIGCAS
文摘The south Gangdese region is the site of subduction of the Neo-Tethys and subsequent continental col- lision. Compared with widespread Cretaceous and Cenozoic magmatism, Early-Middle Jurassic magmatic rocks and related deposits are rarely reported, Our work identified a 〉200 km long felsic rock belt asso- ciated with Cu mineralization in the south Gangdese region. We report here zircon U-Pb ages, zircon Ce4+/Ce3+ values, and mineral assemblages of two Cu mineralized intrusions within the belt. A horn- blende granite and a diorite porphyry were emplaced at 177.3Ma and 166.3Ma, respectively. Geological occurrence and magmatic hematite-magnetite-chalcopyrite intergrowths suggest that Cu mineralization formed coeval with Jurassic intrusions. Mineralized intrusions have high zircon Ce4+/ Ce3+ and EuN/EuN ratios, and hematite-magnetite intergrowths, suggesting their parent magmas were highly oxidized, Hornblende is common and primary fluid inclusions are found in titanite and apatite, indicating their parent magmas were water-saturated and exsotved volatile phases at early stage of rnag- matic evolution. Those magma characters contribute to the formation of porphyry Cu deposits. Given that majority subduction-related porphyry Cu systems have been eroded following uplift and denudation, the well-preserved Early-Middle Jurassic cu mineralized igneous rocks in south Gangdese are favorable prospecting targets for subduction-related porphyry Cu deposits.