期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Suppression of Ag dewetting and sinterability improvement of submicron Ag-coated Cu particles as fillers in sintering paste by surface modification with stearic acid
1
作者 Yeongjung KIM Yong-Sung EOM +1 位作者 Kwang-Seong CHOI Jong-Hyun LEE 《Transactions of Nonferrous Metals Society of China》 2025年第6期2008-2020,共13页
Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(... Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles. 展开更多
关键词 submicron Ag-coated cu particle SINTERING DEWETTING surface modification stearic acid electrical resistivity
在线阅读 下载PDF
Rapid pressure-assisted sinter bonding in air using 200 nm Cu particles and enhancement of bonding strength by successive pressureless annealing
2
作者 Myeong In KIM Jong-Hyun LEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期629-638,共10页
To design an effective and realistically applicable sinter bonding process for power devices,we proposed a two-step process using a 200 nm Cu-particle-based paste to form a bondline having high-temperature sustainabil... To design an effective and realistically applicable sinter bonding process for power devices,we proposed a two-step process using a 200 nm Cu-particle-based paste to form a bondline having high-temperature sustainability and superior thermal conductance.This process involved rapid pressure-assisted sinter bonding in air followed by pressureless annealing in a nitrogen atmosphere.In the case of a paste prepared with a mixture of 20 wt.%malic acid and 80 wt.%ethylene glycol,sinter bonding at 300℃and 5 MPa for only 30 s resulted in a sufficient shear strength of 23.1 MPa.The shear strength was significantly enhanced to 69.6 MPa by the additional pressureless aging for 30 min.Therefore,the two-step sinter bonding process is expected to provide an outstanding production rate as a next-generation sinter bonding process. 展开更多
关键词 submicron cu particles cu paste malic acid sinter bonding successive annealing shear strength
在线阅读 下载PDF
Degradation of p-nitrophenol(PNP) in aqueous solution by mFe/Cu-air-PS system 被引量:12
3
作者 Heng Zhang Qingqing Ji +2 位作者 Leiduo Lai Gang Yao Bo Lai 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第5期1129-1132,共4页
In this study,batch experiments were conducted to investigate the performance of microscale Fe/Cu bimetallic particles-air-persulfate system(mFe/Cu-air-PS)for p-nitrophenol(PNP)treatment in aqueous solution.First,the ... In this study,batch experiments were conducted to investigate the performance of microscale Fe/Cu bimetallic particles-air-persulfate system(mFe/Cu-air-PS)for p-nitrophenol(PNP)treatment in aqueous solution.First,the optimal operating parameters(i.e.,aeration rate of 1.0 L/min,theoretical Cu mass loading(TMLCu)of 0.110 g Cu/g Fe,mFe/Cu dosage of 15 g/L,PS total dosage of 15 mmol/L,feeding times of PS of 5,initial pH 5.4)were obtained successively by single-factor experiments.Under the optimal conditions,high COD and TOC removal efficiencies(71.0%,65.8%)were obtained after 60 min treatment.Afterword,compared with control experiments(i.e.,mFe/Cu,air,PS,mFe/Cu-air,mFe/Cu–PS,air-PS and mFe-air-PS),mFe/Cu-air-PS system exerted superior performance for pollutants removal due to the synergistic effect between mFe/Cu,air and PS.In addition,the results of control experiments and radical quenching experiments indicate this reinforcement by feeding of PS was greater than by aeration in m Fe/Cu-air-PS system.Furthermore,the degradation intermediates of PNP in mFe/Cu-air-PS process were identified and measured by HPLC.Based on the detected intermediates,the degradation pathways of PNP were proposed comprehensively,which revealed that toxic and refractory PNP in aqueous solution could be decomposed effectively and transformed into lower toxicity intermediates.As a result,m Fe/Cu-air-PS system with the performance of oxidation combined reduction can be also a potential technology for the treatment of toxic and refractory PNP contained wastewater. 展开更多
关键词 p-Nitrophenol(PNP) Microscale Fe/cu bimetallic particles(mFe/cu) Persulfate(PS) AIR aeration mFe/cu-air-PS system
原文传递
Heat Transfer Analysis of MHD Power Law Nano Fluid Flow through Annular Sector Duct
4
作者 AHMED Farhan IQBAL Mazhar 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第1期169-181,共13页
Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu an... Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu and TiO2)are used in power law nano fluid.Strongly implicit procedure,(SIP)is used to simulate the discretized coupled algebraic equations.It has been observed that volume fraction of nano particles,ϕand magnetic field parameter,Ha are favourable for the heat transfer rate,however,both resist the fluid flow.Impact of applied uniform transverse magnetic field exceeds in the case of shear thickening fluids(i.e.n>1)by increasing the value of Ha as compared to that in shear thinning fluids(i.e.n<1).Therefore,enhancement in heat transfer rate is comparably more in shear thickening fluid.Furthermore,comparable limiting case study with published result is also carried out in this research paper. 展开更多
关键词 electrically conducting power law nano fluid cu nano particles TiO2 nano particles shear thickening fluid shear thinning fluid heat transfer rate friction factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部