The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to secur...The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to securing such devices.As these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all.We have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in 2016.Therefore we propose a lightweight authentication protocol to provide proper access to such devices.We have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,etc.To define the architecture we used a three-layered model consisting of cloud,fog,and edge devices.We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage.We also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human intervention.We find that our protocol works the fastest when using ring learning with errors.We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool.In conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.展开更多
With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.Th...With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.展开更多
The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Tel...The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.展开更多
Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approac...Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.展开更多
In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual ...In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.展开更多
Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS...Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.展开更多
The paper describes the concept of plaintext encryption by using the Unicode characters. In the case of elliptic curve cryptography, there is not specified rule or algorithm to specify the letters of Tifinagh as well ...The paper describes the concept of plaintext encryption by using the Unicode characters. In the case of elliptic curve cryptography, there is not specified rule or algorithm to specify the letters of Tifinagh as well as special characters. So, the paper gives the transformation of characters Tifinagh into points on elliptic curve by using the corresponding characters Latin. The obtained correspondence has been applied in Menezes-Vanstone cryptosystem based on elliptic curve. Therefore, the paper explains in detail its implementation in Maple 12.展开更多
The existing quantum cryptography is a classical cryptography in nature and basically insecure because of its classical (conventional) bits, classical encryption algorithm and classical (public) channel. A novel topic...The existing quantum cryptography is a classical cryptography in nature and basically insecure because of its classical (conventional) bits, classical encryption algorithm and classical (public) channel. A novel topic about successful communication between the legitimate users, Alice and Bob, is discussed with probability of solution uniqueness of Bob’s decryption equation. We find, by probabilistic analysis, that success of communication between Alice and Bob is probabilistic with a probability bigger than 1/2. It is also novel to define insecurity of the quantum cryptography by probability of solution uniqueness of the search equation of Eve, the eavesdropper. The probability of Eve’s success to find the plain-text of Alice (and Bob) is greater than 1/2, and so the quantum cryptography is seriously insecure.展开更多
There are quite more applications of group theory. The recent application of group theory is public key (asymmetric) cryptography. All cryptographic algorithms have some weaknesses. To avoid its weakness, some speci...There are quite more applications of group theory. The recent application of group theory is public key (asymmetric) cryptography. All cryptographic algorithms have some weaknesses. To avoid its weakness, some special groups and methods can applied on. We will touch on group based public key cryptography and will give some suggestions in this area.展开更多
An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNA...An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.展开更多
A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over fini...A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.展开更多
Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-sp...Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept- resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.展开更多
With the increasing need of sensitive or secret data transmission through public network,security demands using cryptography and steganography are becoming a thirsty research area of last few years.These two technique...With the increasing need of sensitive or secret data transmission through public network,security demands using cryptography and steganography are becoming a thirsty research area of last few years.These two techniques can be merged and provide better security which is nowadays extremely required.The proposed system provides a novel method of information security using the techniques of audio steganography combined with visual cryptography.In this system,we take a secret image and divide it into several subparts to make more than one incomprehensible sub-images using the method of visual cryptography.Each of the sub-images is then hidden within individual cover audio files using audio steganographic techniques.The cover audios are then sent to the required destinations where reverse steganography schemes are applied to them to get the incomprehensible component images back.At last,all the sub-images are superimposed to get the actual secret image.This method is very secure as it uses a two-step security mechanism to maintain secrecy.The possibility of interception is less in this technique because one must have each piece of correct sub-image to regenerate the actual secret image.Without superimposing every one of the sub-images meaningful secret images cannot be formed.Audio files are composed of densely packed bits.The high density of data in audio makes it hard for a listener to detect the manipulation due to the proposed time-domain audio steganographic method.展开更多
As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it direct...As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it directed a beam at a different receiver in Austria. These transmissions, delivered to sites 7600 km apart, were noteworthy because they marked the first time a satellite had relayed secret quantum keys for decrypting and viewing messages. With the keys, scientists in China and Austria were able to exchange and decipher encrypted images. And on 29 September 2017, the researchers used the system to set up an encrypted 75-minute video conference between members of the Chinese Academy of Sciences in Beijing and their counterparts at the Austrian Academy of Sciences in Vienna [1].展开更多
A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selec...A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selection of random pixels from the original digital image instead of specific selection of pixels. The new method proposed does not require that the watermark pattern to be embedded in to the original digital image. Instead of that, verification information is generated which will be used to verify the ownership of the image. This leaves the marked image equal to the original image. The method is based on the relationship between randomly selected pixels and their 8-neighbors’ pixels. This relationship keeps the marked image coherent against diverse attacks even if the most significant bits of randomly selected pixels have been changed by attacker as we will see later in this paper. Experimental results show the proposed method can recover the watermark pattern from the marked image even if major changes are made to the original digital image.展开更多
Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security thr...Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security threats, like data breaches, side-channel attacks, and virus and data authentication. Classical cryptographic algorithms, like the Rivest-Shamir-Adleman (RSA) algorithm, work well under the classical computers. But the technology is slowly shifting towards quantum computing, which has immense processing power and is more than enough to break the current cryptographic algorithms easily. So it is required that we have to design quantum cryptographic algorithms to prevent our systems from security breaches even before quantum computers come in the market for commercial uses. IoT will also be one of the disciplines, which needs to be secured to prevent any malicious activities. In this paper, we review the common security threats in IoT and the presently available solutions with their drawbacks. Then quantum cryptography is introduced with some of its variations. And finally, the analysis has been carried out in terms of the pros and cons of implementing quantum cryptography for IoT security.展开更多
In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-respo...In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.展开更多
Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modul...Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively展开更多
In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or mor...In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.展开更多
With the advent of quantum computing,numerous efforts have been made to standardize post-quantum cryptosystems with the intention of(eventually)replacing Elliptic Curve Cryptography(ECC)and Rivets-Shamir-Adelman(RSA)....With the advent of quantum computing,numerous efforts have been made to standardize post-quantum cryptosystems with the intention of(eventually)replacing Elliptic Curve Cryptography(ECC)and Rivets-Shamir-Adelman(RSA).A modified version of the traditional N-Th Degree Truncated Polynomial Ring(NTRU)cryptosystem called NTRU Prime has been developed to reduce the attack surface.In this paper,the Signcryption scheme was proposed,and it is most efficient than others since it reduces the complexity and runs the time of the code execution,and at the same time,provides a better security degree since it ensures the integrity of the sent message,confidentiality of the data,forward secrecy when using refreshed parameters for each session.Unforgeability to prevent the man-in-the-middle attack from being active or passive,and non-repudiation when the sender can’t deny the recently sent message.This study aims to create a novel NTRU cryptography algorithm system that takes advantage of the security features of curve fitting operations and the valuable characteristics of chaotic systems.The proposed algorithm combines the(NTRU Prime)and Shamir’s Secret Sharing(SSS)features to improve the security of the NTRU encryption and key generation stages that rely on robust polynomial generation.Based on experimental results and a comparison of the time required for crucial exchange between NTRU-SSS and the original NTRU,this study shows a rise in complexity with a decrease in execution time in the case when compared to the original NTRU.It’s encouraging to see signs that the suggested changes to the NTRU work to increase accuracy and efficiency.展开更多
文摘The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to securing such devices.As these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all.We have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in 2016.Therefore we propose a lightweight authentication protocol to provide proper access to such devices.We have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,etc.To define the architecture we used a three-layered model consisting of cloud,fog,and edge devices.We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage.We also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human intervention.We find that our protocol works the fastest when using ring learning with errors.We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool.In conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.
文摘With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.
基金supported through Universiti Sains Malaysia(USM)and the Ministry of Higher Education Malaysia providing the research grant,Fundamental Research Grant Scheme(FRGS-Grant No.FRGS/1/2020/TK0/USM/02/1).
文摘The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2700600the National Natural Science Foundation of China under Grant No.62132013+5 种基金the Key Research and Development Programs of Shaanxi under Grant Nos.S2024-YF-YBGY-1540 and 2021ZDLGY06-03the Basic Strengthening Plan Program under Grant No.2023-JCJQ-JJ-0772the Key-Area Research and Development Program of Guangdong Province under Grant No.2021B0101400003Hong Kong RGC Research Impact Fund under Grant Nos.R5060-19 and R5034-18Areas of Excellence Scheme under Grant No.Ao E/E-601/22-RGeneral Research Fund under Grant Nos.152203/20E,152244/21E,152169/22E and152228/23E。
文摘Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.
文摘In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.
基金supported in part by the Testbed@TWISC, National Science Council under the Grant No. 100-2219-E-006-001in part by National Natural Science Foundation of China under the Grant No. 60903210
文摘Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.
文摘The paper describes the concept of plaintext encryption by using the Unicode characters. In the case of elliptic curve cryptography, there is not specified rule or algorithm to specify the letters of Tifinagh as well as special characters. So, the paper gives the transformation of characters Tifinagh into points on elliptic curve by using the corresponding characters Latin. The obtained correspondence has been applied in Menezes-Vanstone cryptosystem based on elliptic curve. Therefore, the paper explains in detail its implementation in Maple 12.
文摘The existing quantum cryptography is a classical cryptography in nature and basically insecure because of its classical (conventional) bits, classical encryption algorithm and classical (public) channel. A novel topic about successful communication between the legitimate users, Alice and Bob, is discussed with probability of solution uniqueness of Bob’s decryption equation. We find, by probabilistic analysis, that success of communication between Alice and Bob is probabilistic with a probability bigger than 1/2. It is also novel to define insecurity of the quantum cryptography by probability of solution uniqueness of the search equation of Eve, the eavesdropper. The probability of Eve’s success to find the plain-text of Alice (and Bob) is greater than 1/2, and so the quantum cryptography is seriously insecure.
文摘There are quite more applications of group theory. The recent application of group theory is public key (asymmetric) cryptography. All cryptographic algorithms have some weaknesses. To avoid its weakness, some special groups and methods can applied on. We will touch on group based public key cryptography and will give some suggestions in this area.
基金supported by the National Natural Science Foundation of China(60373109)Ministry of Science and Technologyof China and the National Commercial Cryptography Application Technology Architecture and Application DemonstrationProject(2008BAA22B02).
文摘An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.
基金Supported bythe Specialized Research Fundfor the Doctoral Programof Higher Education of China (20050183032) the Science Foundation Project of Jilin Province Education Office(2005180 ,2005181)
文摘A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No 60872052)
文摘Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal parti- cles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept- resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.
基金Taif University Researchers Supporting Project No.(TURSP-2020/77),Taif university,Taif,Saudi Arabia.
文摘With the increasing need of sensitive or secret data transmission through public network,security demands using cryptography and steganography are becoming a thirsty research area of last few years.These two techniques can be merged and provide better security which is nowadays extremely required.The proposed system provides a novel method of information security using the techniques of audio steganography combined with visual cryptography.In this system,we take a secret image and divide it into several subparts to make more than one incomprehensible sub-images using the method of visual cryptography.Each of the sub-images is then hidden within individual cover audio files using audio steganographic techniques.The cover audios are then sent to the required destinations where reverse steganography schemes are applied to them to get the incomprehensible component images back.At last,all the sub-images are superimposed to get the actual secret image.This method is very secure as it uses a two-step security mechanism to maintain secrecy.The possibility of interception is less in this technique because one must have each piece of correct sub-image to regenerate the actual secret image.Without superimposing every one of the sub-images meaningful secret images cannot be formed.Audio files are composed of densely packed bits.The high density of data in audio makes it hard for a listener to detect the manipulation due to the proposed time-domain audio steganographic method.
文摘As it circled the Earth one night in 2017, the Chinese satellite Mozi, also called Micius, aimed a laser at a ground station in northeastern China (Fig. 1). Then, as it traveled toward Europe and into range, it directed a beam at a different receiver in Austria. These transmissions, delivered to sites 7600 km apart, were noteworthy because they marked the first time a satellite had relayed secret quantum keys for decrypting and viewing messages. With the keys, scientists in China and Austria were able to exchange and decipher encrypted images. And on 29 September 2017, the researchers used the system to set up an encrypted 75-minute video conference between members of the Chinese Academy of Sciences in Beijing and their counterparts at the Austrian Academy of Sciences in Vienna [1].
文摘A method for creating digital image copyright protection is proposed in this paper. The proposed method in this paper is based on visual cryptography defined by Noor and Shamir. The proposed method is working on selection of random pixels from the original digital image instead of specific selection of pixels. The new method proposed does not require that the watermark pattern to be embedded in to the original digital image. Instead of that, verification information is generated which will be used to verify the ownership of the image. This leaves the marked image equal to the original image. The method is based on the relationship between randomly selected pixels and their 8-neighbors’ pixels. This relationship keeps the marked image coherent against diverse attacks even if the most significant bits of randomly selected pixels have been changed by attacker as we will see later in this paper. Experimental results show the proposed method can recover the watermark pattern from the marked image even if major changes are made to the original digital image.
文摘Internet of things (IoT) is a developing technology with a lot of scope in the future. It can ease various different tasks for us. On one hand, IoT is useful for us, on the other hand, it has many serious security threats, like data breaches, side-channel attacks, and virus and data authentication. Classical cryptographic algorithms, like the Rivest-Shamir-Adleman (RSA) algorithm, work well under the classical computers. But the technology is slowly shifting towards quantum computing, which has immense processing power and is more than enough to break the current cryptographic algorithms easily. So it is required that we have to design quantum cryptographic algorithms to prevent our systems from security breaches even before quantum computers come in the market for commercial uses. IoT will also be one of the disciplines, which needs to be secured to prevent any malicious activities. In this paper, we review the common security threats in IoT and the presently available solutions with their drawbacks. Then quantum cryptography is introduced with some of its variations. And finally, the analysis has been carried out in terms of the pros and cons of implementing quantum cryptography for IoT security.
基金Project (No. 60372076) supported by the National Natural ScienceFoundation of China
文摘In this paper, the authors present a novel mutual authentication and key agreement protocol based on the Number Theory Research Unit (NTRU) public key cryptography. The symmetric encryption, hash and “challenge-response” techniques were adopted to build their protocol. To implement the mutual authentication and session key agreement, the proposed protocol contains two stages: namely initial procedure and real execution stage. Since the lightweight NTRU public key cryptography is employed, their protocol can not only overcome the security flaws of secret-key based authentication protocols such as those used in Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS), but also provide greater security and lower computational complexity in comparison with currently well-known public key based wireless authentication schemes such as Beller-Yacobi and M.Aydos protocols.
基金Supported by the National Natural Science Foun-dation of China (60373087)
文摘Modular arithmetic is a fundamental operation and plays an important role in public key cryptosystem. A new method and its theory evidence on the basis of modular arithmetic with large integer modulus-changeable modulus algorithm is proposed to improve the speed of the modular arithmetic in the presented paper. For changeable modulus algorithm, when modular computation of modulo n is difficult, it can be realized by computation of modulo n-1 and n-2 on the perquisite of easy modular computations of modulo n-1 and modulo n-2. The conclusion is that the new method is better than the direct method by computing the modular arithmetic operation with large modulus. Especially, when computations of modulo n-1 and modulo n-2 are easy and computation of modulo n is difficult, this new method will be faster and has more advantages than other algorithms on modular arithmetic. Lastly, it is suggested that the proposed method be applied in public key cryptography based on modular multiplication and modular exponentiation with large integer modulus effectively
文摘In Shamir’s(t,n) threshold of the secret sharing scheme, a secret is divided into n shares by a dealer and is shared among n shareholders in such a way that (a) the secret can be reconstructed when there are t or more than t shares;and (b) the secret cannot be obtained when there are fewer than t shares. In the secret reconstruction, participating users can be either legitimate shareholders or attackers. Shamir’s scheme only considers the situation when all participating users are legitimate shareholders. In this paper, we show that when there are more than t users participating and shares are released asynchronously in the secret reconstruction, an attacker can always release his share last. In such a way, after knowing t valid shares of legitimate shareholders, the attacker can obtain the secret and therefore, can successfully impersonate to be a legitimate shareholder without being detected. We propose a simple modification of Shamir’s scheme to fix this security problem. Threshold cryptography is a research of group-oriented applications based on the secret sharing scheme. We show that a similar security problem also exists in threshold cryptographic applications. We propose a modified scheme to fix this security problem as well.
文摘With the advent of quantum computing,numerous efforts have been made to standardize post-quantum cryptosystems with the intention of(eventually)replacing Elliptic Curve Cryptography(ECC)and Rivets-Shamir-Adelman(RSA).A modified version of the traditional N-Th Degree Truncated Polynomial Ring(NTRU)cryptosystem called NTRU Prime has been developed to reduce the attack surface.In this paper,the Signcryption scheme was proposed,and it is most efficient than others since it reduces the complexity and runs the time of the code execution,and at the same time,provides a better security degree since it ensures the integrity of the sent message,confidentiality of the data,forward secrecy when using refreshed parameters for each session.Unforgeability to prevent the man-in-the-middle attack from being active or passive,and non-repudiation when the sender can’t deny the recently sent message.This study aims to create a novel NTRU cryptography algorithm system that takes advantage of the security features of curve fitting operations and the valuable characteristics of chaotic systems.The proposed algorithm combines the(NTRU Prime)and Shamir’s Secret Sharing(SSS)features to improve the security of the NTRU encryption and key generation stages that rely on robust polynomial generation.Based on experimental results and a comparison of the time required for crucial exchange between NTRU-SSS and the original NTRU,this study shows a rise in complexity with a decrease in execution time in the case when compared to the original NTRU.It’s encouraging to see signs that the suggested changes to the NTRU work to increase accuracy and efficiency.