Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follow...Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follows a latitudinal cline. R and FR wavelengths form a significant component of the entire plant life cycle, including the initial developmental stages such as seed germination, cotyledon expansion and hypocotyl elongation. With an aim to identify differentially expressed candidate genes, which would provide a clue regarding genes involved in the local adaptive response in Scots pine (Pinus sylvestris) with reference to red/far-red light;we performed a global expression analysis of Scots pine hypocotyls grown under two light treatments, continuous R (cR) and continuous FR (cFR) light;using Pinus taeda cDNA microarrays on bulked hypocotyl tissues from different individuals, which represented different genotypes. This experiment was performed with the seeds collected from northern part of Sweden (Ylinen, 68?N). Interestingly, gene expression pattern with reference to cryptochrome1, a blue light photoreceptor, was relatively high under cFR as compared to cR light treatment. Additionally, the microarray data analysis also revealed expression of 405 genes which was enhanced under cR light treatment;while the expression of 239 genes was enhanced under the cFR light treatment. Differentially expressed genes were re-annotated using Blast2GO tool. These results indicated that cR light acts as promoting factor whereas cFR antagonises the effect in most of the processes like C/N metabolism, photosynthesis and cell wall metabolism which is in accordance with former findings in Arabidopsis. We propose cryptochrome1 as a strong candidate gene to study the adaptive cline response under R and FR light in Scots pine as it shows a differential expression under the two light conditions.展开更多
Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus susta...Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus sustain homeostasis. This is especially relevant in the liver, a key metabolic organ thatgoverns body energy metabolism. Autophagy’s role in hepatic energy regulation has just begun to emerge and autophagy seems to have a much broader impact than what has been appreciated in the field. Though classically known for selective or bulk degradation of cellular components or energy-dense macromolecules, emerging evidence indicates autophagy selectively regulates various signaling proteins to directly impact the expression levels of metabolic enzymes or their upstream regulators. Hence, we review three specific mechanisms by which autophagy can regulate metabolism: A) nutrient regeneration, B) quality control of organelles, and C) signaling protein regulation. The plasticity of the autophagic function is unraveling a new therapeutic approach. Thus, we will also discuss the potential translation of promising preclinical data on autophagy modulation into therapeutic strategies that can be used in the clinic to treat common metabolic disorders.展开更多
Light is a critical environmental cue that regulates a variety of diverse plant developmental processes.Cryptochrome 1(CRY1)is the major photoreceptor that mediates blue light-dependent photomorphogenic responses such...Light is a critical environmental cue that regulates a variety of diverse plant developmental processes.Cryptochrome 1(CRY1)is the major photoreceptor that mediates blue light-dependent photomorphogenic responses such as the inhibition of hypocotyl elongation.Gibberellin(GA)participates in the repression of photomorphogenesis and promotes hypocotyl elongation.However,the antagonistic interaction between blue light and GA is not well understood.Here,we report that blue light represses GA-induced degradation of the DELLA proteins(DELLAs),which are key negative regulators in the GA signaling pathway,via CRY1,thereby inhibiting the GA response during hypocotyl elongation.Both in vitro and in vivo biochemical analyses demonstrated that CRY1 physically interacts with GA receptors-GA-INSENSITIVE DWARF 1 proteins(GID1s)-and DELLAs in a blue light-dependent manner.Furthermore,we showed that CRY1 inhibits the association between GID1s and DELLAs.Genetically,CRY1 antagonizes the function of GID1s to repress the expression of cell elongation-related genes and thus hypocotyl elongation.Taken together,our findings demonstrate that CRY1 coordinates blue light and GA signali ng for plant photomorphogenesis by stabilizing DELLAs through the binding and in activation of GID1s,providing new in sights into the mechanism by which blue light antagonizes the function of GA in photomorphogenesis.展开更多
Improvements in plant architecture,such as reduced plant height under high-density planting,are important for agricultural production.Light and gibberellin(GA)are essential external and internal cues that affect plant...Improvements in plant architecture,such as reduced plant height under high-density planting,are important for agricultural production.Light and gibberellin(GA)are essential external and internal cues that affect plant architecture.In this study,we characterize the direct interaction of distinct receptors that link light and GA signaling in Arabidopsis(Arabidopsis thaliana)and wheat(Triticum aestivum L.).We show that the light receptor CRY1 represses GA signaling through interaction with all five DELLA proteins and promotion of RGA protein accumulation in Arabidopsis.Genetic analysis shows that CRY1-mediated growth repression is achieved by means of the DELLA proteins.Interestingly,we find that CRY1 also directly interacts with the GA receptor GID1 to competitively inhibit the GID1-GAI interaction.We also show that overexpression of TaCRY1a reduces plant height and coleoptile growth in wheat and that TaCRY1a interacts with both TaGID1 and Rht1 to competitively attenuate the TaGID1-Rht1 interaction.Based on these findings,we propose that the photoreceptor CRY1 competitively inhibits the GID1-DELLA interaction,thereby stabilizing DELLA proteins and enhancing their repression of plant growth.展开更多
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. The heterotrimeric G-protein is known to regulate various physiological processes in plants and mammals. In Arabi...Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. The heterotrimeric G-protein is known to regulate various physiological processes in plants and mammals. In Arabidopsis, cryptochrome 1(CRY1) and the G-protein β subunit AGB1 act antagonistically to regulate stomatal development.The molecular mechanism by which CRY1 and AGB1 regulate this process remains unknown.Here, we show that Arabidopsis CRY1 acts partially through AGB1, and AGB1 acts through SPEECHLESS(SPCH), a master transcription factor that drives stomatal initiation and proliferation, to regulate stomatal development. We demonstrate that AGB1 physically interacts with SPCH to block the b HLH DNA-binding domain of SPCH and inhibit its DNA-binding activity. Moreover, we demonstrate that photoexcited CRY1 represses the interaction of AGB1 with SPCH to release AGB1 inhibition of SPCH DNA-binding activity, leading to the expression of SPCH-target genes promoting stomatal development. Taken together, our results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH mediated by CRY1 inhibition of the AGB1-SPCH interaction. We propose that the antagonistic regulation of SPCH DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize stomatal density and pattern.展开更多
Cryptochrome 1(CRY1)functions as a light-responsive photoreceptor,which is crucial for circadian rhythms.The identity and function of CRY1 in Plutella xylostella remain unknown.In this study,cryl was cloned and identi...Cryptochrome 1(CRY1)functions as a light-responsive photoreceptor,which is crucial for circadian rhythms.The identity and function of CRY1 in Plutella xylostella remain unknown.In this study,cryl was cloned and identified in P xylostella.Then,a cry1-knockout strain(Cry1-KO)of P xylostella with a 2-bp deletion was established from the strain Geneva 88(G88)using the CRISPR/Cas9 technology.No daily temporal os-cillation of cryl was observed in G88 and Cry1-KO,and cryl mean daily transcription of Cry1-KO was lower than that of G88.Both G88 and Cry1-KO demonstrated rhythmic locomotion under the light/dark condition with Cryl-KO being more active than G88 in the daytime,whereas Cry1-KO completely lost rhythmicity under constant darkness.The developmental period of pre-adult of Cry1-KO was longer than that of G88;the lifespan of the Cry1-KO male adult was shorter than that of G88;the fecundity of Cry1-KO was lower than that of G88;and Cry1-KO showed lower intrinsic rate of increase(r),net repro-duction rate(Ro),finite increase rate(a),and longer mean generation time(T)than G88.Our results indicate that cryl is involved in the regulation of locomotor circadian rhythm and development in P xylostella,providing a potential target gene for controlling the pest and a basis for further investigation on circadian rhythms in lepidopterans.展开更多
文摘Light quality response is a vital environmental cue regulating plant development. Conifers, like angiosperms, respond to the changes in light quality including the level of red (R) and far-red (FR) light, which follows a latitudinal cline. R and FR wavelengths form a significant component of the entire plant life cycle, including the initial developmental stages such as seed germination, cotyledon expansion and hypocotyl elongation. With an aim to identify differentially expressed candidate genes, which would provide a clue regarding genes involved in the local adaptive response in Scots pine (Pinus sylvestris) with reference to red/far-red light;we performed a global expression analysis of Scots pine hypocotyls grown under two light treatments, continuous R (cR) and continuous FR (cFR) light;using Pinus taeda cDNA microarrays on bulked hypocotyl tissues from different individuals, which represented different genotypes. This experiment was performed with the seeds collected from northern part of Sweden (Ylinen, 68?N). Interestingly, gene expression pattern with reference to cryptochrome1, a blue light photoreceptor, was relatively high under cFR as compared to cR light treatment. Additionally, the microarray data analysis also revealed expression of 405 genes which was enhanced under cR light treatment;while the expression of 239 genes was enhanced under the cFR light treatment. Differentially expressed genes were re-annotated using Blast2GO tool. These results indicated that cR light acts as promoting factor whereas cFR antagonises the effect in most of the processes like C/N metabolism, photosynthesis and cell wall metabolism which is in accordance with former findings in Arabidopsis. We propose cryptochrome1 as a strong candidate gene to study the adaptive cline response under R and FR light in Scots pine as it shows a differential expression under the two light conditions.
基金supported by the Tulane University School of Medicine Endowment Fund(BK,USA)American Society for Investigative Pathology(ASIP/SROPP)(KB&SB,USA)Be HEARD Rare Disease challenge 2020(BK,USA)。
文摘Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus sustain homeostasis. This is especially relevant in the liver, a key metabolic organ thatgoverns body energy metabolism. Autophagy’s role in hepatic energy regulation has just begun to emerge and autophagy seems to have a much broader impact than what has been appreciated in the field. Though classically known for selective or bulk degradation of cellular components or energy-dense macromolecules, emerging evidence indicates autophagy selectively regulates various signaling proteins to directly impact the expression levels of metabolic enzymes or their upstream regulators. Hence, we review three specific mechanisms by which autophagy can regulate metabolism: A) nutrient regeneration, B) quality control of organelles, and C) signaling protein regulation. The plasticity of the autophagic function is unraveling a new therapeutic approach. Thus, we will also discuss the potential translation of promising preclinical data on autophagy modulation into therapeutic strategies that can be used in the clinic to treat common metabolic disorders.
基金supported by the National Natural Science Foundation of China(no.31171176)the Natural Science Foundation of Hunan Province(no.2020JJ4183)the Basic Research Program of Changsha Municipal Science and Technology(no.kq1901028).
文摘Light is a critical environmental cue that regulates a variety of diverse plant developmental processes.Cryptochrome 1(CRY1)is the major photoreceptor that mediates blue light-dependent photomorphogenic responses such as the inhibition of hypocotyl elongation.Gibberellin(GA)participates in the repression of photomorphogenesis and promotes hypocotyl elongation.However,the antagonistic interaction between blue light and GA is not well understood.Here,we report that blue light represses GA-induced degradation of the DELLA proteins(DELLAs),which are key negative regulators in the GA signaling pathway,via CRY1,thereby inhibiting the GA response during hypocotyl elongation.Both in vitro and in vivo biochemical analyses demonstrated that CRY1 physically interacts with GA receptors-GA-INSENSITIVE DWARF 1 proteins(GID1s)-and DELLAs in a blue light-dependent manner.Furthermore,we showed that CRY1 inhibits the association between GID1s and DELLAs.Genetically,CRY1 antagonizes the function of GID1s to repress the expression of cell elongation-related genes and thus hypocotyl elongation.Taken together,our findings demonstrate that CRY1 coordinates blue light and GA signali ng for plant photomorphogenesis by stabilizing DELLAs through the binding and in activation of GID1s,providing new in sights into the mechanism by which blue light antagonizes the function of GA in photomorphogenesis.
基金This research was supported by the Central Public-interest Scientific Institution Basic Research Fund(S2021ZD02)the Open Project Funding of the State Key Laboratory of Crop Stress Adaptation and Improvement,the National Natural Science Foundation of China(grant nos.31971880 and 31991213)the Agricultural Science and Technology Innovation Program of CAAS.
文摘Improvements in plant architecture,such as reduced plant height under high-density planting,are important for agricultural production.Light and gibberellin(GA)are essential external and internal cues that affect plant architecture.In this study,we characterize the direct interaction of distinct receptors that link light and GA signaling in Arabidopsis(Arabidopsis thaliana)and wheat(Triticum aestivum L.).We show that the light receptor CRY1 represses GA signaling through interaction with all five DELLA proteins and promotion of RGA protein accumulation in Arabidopsis.Genetic analysis shows that CRY1-mediated growth repression is achieved by means of the DELLA proteins.Interestingly,we find that CRY1 also directly interacts with the GA receptor GID1 to competitively inhibit the GID1-GAI interaction.We also show that overexpression of TaCRY1a reduces plant height and coleoptile growth in wheat and that TaCRY1a interacts with both TaGID1 and Rht1 to competitively attenuate the TaGID1-Rht1 interaction.Based on these findings,we propose that the photoreceptor CRY1 competitively inhibits the GID1-DELLA interaction,thereby stabilizing DELLA proteins and enhancing their repression of plant growth.
基金This work was supported by The National Natural Science Foundation of China grants(31530085,31900609,31900207,32000183)The National Key Research and Development Program of China grant(2017YFA0503802)The Science and Technology Commission of Shanghai Municipality grant(18DZ2260500)。
文摘Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. The heterotrimeric G-protein is known to regulate various physiological processes in plants and mammals. In Arabidopsis, cryptochrome 1(CRY1) and the G-protein β subunit AGB1 act antagonistically to regulate stomatal development.The molecular mechanism by which CRY1 and AGB1 regulate this process remains unknown.Here, we show that Arabidopsis CRY1 acts partially through AGB1, and AGB1 acts through SPEECHLESS(SPCH), a master transcription factor that drives stomatal initiation and proliferation, to regulate stomatal development. We demonstrate that AGB1 physically interacts with SPCH to block the b HLH DNA-binding domain of SPCH and inhibit its DNA-binding activity. Moreover, we demonstrate that photoexcited CRY1 represses the interaction of AGB1 with SPCH to release AGB1 inhibition of SPCH DNA-binding activity, leading to the expression of SPCH-target genes promoting stomatal development. Taken together, our results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH mediated by CRY1 inhibition of the AGB1-SPCH interaction. We propose that the antagonistic regulation of SPCH DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize stomatal density and pattern.
基金funded by the National Key R&D Program of China,grant number 2017YFD0200400the Special Key Project of Fujian Province,grant number 2018NZ01010013,and a fund of"111"program,grant numberKRA16001A.
文摘Cryptochrome 1(CRY1)functions as a light-responsive photoreceptor,which is crucial for circadian rhythms.The identity and function of CRY1 in Plutella xylostella remain unknown.In this study,cryl was cloned and identified in P xylostella.Then,a cry1-knockout strain(Cry1-KO)of P xylostella with a 2-bp deletion was established from the strain Geneva 88(G88)using the CRISPR/Cas9 technology.No daily temporal os-cillation of cryl was observed in G88 and Cry1-KO,and cryl mean daily transcription of Cry1-KO was lower than that of G88.Both G88 and Cry1-KO demonstrated rhythmic locomotion under the light/dark condition with Cryl-KO being more active than G88 in the daytime,whereas Cry1-KO completely lost rhythmicity under constant darkness.The developmental period of pre-adult of Cry1-KO was longer than that of G88;the lifespan of the Cry1-KO male adult was shorter than that of G88;the fecundity of Cry1-KO was lower than that of G88;and Cry1-KO showed lower intrinsic rate of increase(r),net repro-duction rate(Ro),finite increase rate(a),and longer mean generation time(T)than G88.Our results indicate that cryl is involved in the regulation of locomotor circadian rhythm and development in P xylostella,providing a potential target gene for controlling the pest and a basis for further investigation on circadian rhythms in lepidopterans.