期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multi-Dimension Support Vector Machine Based Crowd Detection and Localisation Framework for Varying Video Sequences
1
作者 Manoharan Mahalakshmi Radhakrishnan Kanthavel Divakaran Thilagavathy Dinesh 《Circuits and Systems》 2016年第11期3565-3588,共24页
In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance mo... In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance model. In multi-dimension SVM crowd detection, many features are available to track the object robustly with three main features which include 1) identification of an object by gray scale value, 2) histogram of oriented gradients (HOG) and 3) local binary pattern (LBP). We propose two more powerful features namely gray level co-occurrence matrix (GLCM) and Gaber feature for more accurate and authenticate tracking result. To combine and process the corresponding SVMs obtained from each features, a new collaborative strategy is developed on the basis of the confidence distribution of the video samples which are weighted by entropy method. We have adopted subspace evolution strategy for reconstructing the image of the object by constructing an update model. Also, we determine reconstruction error from the samples and again automatically build an update model for the target which is tracked in the video sequences. Considering the movement of the targeted object, occlusion problem is considered and overcome by constructing a collaborative model from that of appearance model and update model. Also if update model is of discriminative model type, binary classification problem is taken into account and overcome by collaborative model. We run the multi-view SVM tracking method in real time with subspace evolution strategy to track and detect the moving objects in the crowded scene accurately. As shown in the result part, our method also overcomes the occlusion problem that occurs frequently while objects under rotation and illumination change due to different environmental conditions. 展开更多
关键词 Multiple Support Vector Machine crowd detection Motion Blur Collaborative Model Gaber Feature
在线阅读 下载PDF
Research on Dense Crowd Area Detection Method Based on Improved YOLOv5 and Improved DBSCAN Clustering Algorithm
2
作者 Guchang Yuan Zhonghua Ma 《Journal of Applied Mathematics and Physics》 2024年第12期4206-4212,共7页
In modern society, dense crowd detection technology is particularly important due to the frequent occurrence of crowd scenes such as stations, shopping malls, and event sites, which are often accompanied by safety ris... In modern society, dense crowd detection technology is particularly important due to the frequent occurrence of crowd scenes such as stations, shopping malls, and event sites, which are often accompanied by safety risks, like stampede accidents. Although many studies have made progress in estimating population density, the ability to accurately identify dense areas in multi-scale scenarios still needs to be improved. To solve this problem, this paper proposed an improved multi-scale dense crowd detection method based on YOLOv5 and improved the DBSCAN clustering algorithm to identify densely crowded areas. Experiments show that the improved multi-scale dense crowd detection method can identify target crowds at multiple scales, and the accuracy of its detection results is around 70%. In addition, by calculating the crowd density under the same scale conditions and visualising the dense areas, we were able to solve the problem of dividing the crowded areas and visualise the dense areas more accurately. These improvements enhanced the applicability and reliability of the model in practical applications and provided strong technical support for security monitoring and management. 展开更多
关键词 Dense crowd detection YOLOv5 Multi-Scale detection DBSCAN Clustering
在线阅读 下载PDF
Crowd region detection in outdoor scenes using color spaces
3
作者 Huma Chaudhry Mohd Shafry Mohd Rahim +1 位作者 Tanzila Saba Amjad Rehman 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第2期55-69,共15页
In the last few decades,crowd detection has gained much interest from the research community to assist a variety of applications in surveillance systems.While human detection in partially crowded scenarios have achiev... In the last few decades,crowd detection has gained much interest from the research community to assist a variety of applications in surveillance systems.While human detection in partially crowded scenarios have achieved many reliable works,a highly dense crowdlike situation still is far from being solved.Densely crowded scenes offer patterns that could be used to tackle these challenges.This problem is challenging due to the crowd volume,occlusions,clutter and distortion.Crowd region classification is a precursor to several types of applications.In this paper,we propose a novel approach for crowd region detection in outdoor densely crowded scenarios based on color variation context and RGB channel dissimilarity.Experimental results are presented to demonstrate the effectiveness of the new color-based features for better crowd region detection. 展开更多
关键词 crowd detection color features SEGMENTATION detection.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部