Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Effi...Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Efficient feature selection methods are critical for improving diagnostic accuracy,reducing computational costs,and enhancing the interpretability of predictive models.Particle Swarm Optimization(PSO),a widely used metaheuristic inspired by swarm intelligence,has shown considerable promise in feature selection tasks.However,conventional PSO often suffers from premature convergence and limited exploration capabilities,particularly in high-dimensional spaces.To overcome these limitations,this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-tion and a Crossover Operator(OrPSOC).Orthogonal Initialization ensures a diverse and uniformly distributed initial particle population,substantially improving the algorithm’s exploration capability.The Crossover Operator,inspired by genetic algorithms,introduces additional diversity during the search process,effectively mitigating premature convergence and enhancing global search performance.The effectiveness of OrPSOC was rigorously evaluated on three benchmark medical datasets—Colon,Leukemia,and Prostate Tumor.Comparative analyses were conducted against traditional filter-based methods,including Fast Clustering-Based Feature Selection Technique(Fast-C),Minimum Redundancy Maximum Relevance(MinRedMaxRel),and Five-Way Joint Mutual Information(FJMI),as well as prominent metaheuristic algorithms such as standard PSO,Ant Colony Optimization(ACO),Comprehensive Learning Gravitational Search Algorithm(CLGSA),and Fuzzy-Based CLGSA(FCLGSA).Experimental results demonstrated that OrPSOC consistently outperformed these existing methods in terms of classification accuracy,computational efficiency,and result stability,achieving significant improvements even with fewer selected features.Additionally,a sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on model performance.These findings highlight the superiority and robustness of the proposed OrPSOC approach for feature selection in medical diagnostic applications and underscore its potential for broader adoption in various high-dimensional,data-driven fields.展开更多
Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,b...Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit(zT)without compromising electrical conductivity,using temperature-driven spin crossover.Our approach,supported by both theoretical and experimental evidence,is demonstrated through a case study of chromium doped-manganese telluride,but is not confined to this material and can be extended to other magnetic materials.By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover,we achieved a significant increase in thermopower,by approximately 136μV K^(-1),representing more than a 200%enhancement at elevated temperatures within the paramagnetic domain.Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower.These findings,validated by inelastic neutron scattering,X-ray photoemission spectroscopy,thermal transport,and energy conversion measurements,shed light on crucial material design parameters.We provide a comprehensive framework that analyzes the interplay between spin entropy,hopping transport,and magnon/paramagnon lifetimes,paving the way for the development of high-performance spin-driven thermoelectric materials.展开更多
In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more...In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more Li+during charge and discharge processes due to the increased Ni content in their crystal structure,thereby providing higher energy density.However,a significant challenge associated with Ni-rich layered oxide cathodes is the crossover effect,which arises from the dissolution of Ni^(2+)from the cathode,leading to a rapid decline in battery capacity.Through the delocalization-induced effect of solvent molecules,Ni^(2+)is transformed into a fluorinated transition metal inorganic phase layer,thereby forming a corrosion-resistant Li metal interface.This prevents solvent molecules from being reduced and degraded by Li metal anode.The surface of the Li metal anode exhibits a smooth and flat deposition morphology after long-term cycling.Furthermore,the introduction of Ni^(2+)can enhance the concentration gradient of transition metal ions near the cathode,thereby suppressing the dissolution process of transition metal ions.Even the NCM955 cathode with a mass load of 22 mg cm^(−2)also has great capacity retention after cycling.The Ni^(2+)induced by high electronegative functional groups of solvent under the electron delocalization effect,preventing the Ni ions dissolution of cathode and constructing a corrosion-resistant Li metal interface layer.This work provides new insights into suppressing crossover effects in Li metal batteries with high nickel cathodes.展开更多
We report on the measurement of shear viscosity in an ultracold Fermi gas with variable temperatures and tunable interactions.A quadrupole mode excitation in an isotropic harmonic trap is used to quantify the shear vi...We report on the measurement of shear viscosity in an ultracold Fermi gas with variable temperatures and tunable interactions.A quadrupole mode excitation in an isotropic harmonic trap is used to quantify the shear viscosity of the quantum gas within the hydrodynamic regime.The shear viscosity of the system as a function of temperature has been investigated,and the results closely align with calculations in the high-temperature limit utilizing a new definition of the cutoff radius.Through an adiabatic sweep across the Bardeen–Cooper–Schrieffer(BCS)to Bose–Einstein condensate(BEC)crossover,we find that the minimum value of the shear viscosity,as a function of interaction strength,is significantly shifted toward the BEC side.Furthermore,the behavior of the shear viscosity is asymmetric on both sides of the location of the minimum.展开更多
We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and ext...We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and extending this analysis to larger spin chains,we demonstrate that mixed-state entanglement is profoundly shaped by both disorder and temperature.Our results reveal a sharp distinction between many-body localized and ergodic phases,with entanglement vanishing above diferent fnite temperature thresholds.Furthermore,by analyzing non-adjacent spins,we uncover an approximate exponential decay of entanglement with separation.This work advances the understanding of the quantum-to-classical transition by linking the entanglement properties of small subsystems to the broader thermal environment,ofering an explanation for the absence of entanglement in macroscopic systems.These fndings provide critical insights into quantum many-body physics,bridging concepts from thermalization,localization,and quantum information theory.展开更多
Background:Whether lactated Ringer's solution is clinically superior to normal saline for routine intravenous administration of fluids is uncertain.Methods:In an open-label,two-period,two-sequence,cross-sectional,...Background:Whether lactated Ringer's solution is clinically superior to normal saline for routine intravenous administration of fluids is uncertain.Methods:In an open-label,two-period,two-sequence,cross-sectional,cluster-randomized,crossover trial,we assigned hospitals in Ontario,Canada,to use either lactated Ringer's solution or normal saline hospital-wide for a period of 12 weeks.展开更多
Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices...Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices[1].Thermal expansion is a pivotal aspect in solid state chemistry,intricately intertwined with various factors such as crystal structure,chemical composition,electronic configuration,microstructure,and defects.Most materials undergo isotropic and positive thermal expansion(PTE)because of the disharmonic vibrational amplitudes of their chemical bonds.Moreover,anisotropic thermal expansion(ATE)and negative thermal expansion(NTE)are fascinating physical attributes of solids,which can originate from electronic or magnetic mechanisms,as well as through a transverse phonon mechanism in insulating lattice solids.展开更多
The interplay between dimensionality and superconductivity is a central theme in understanding the behavior of low-dimensional superconductors. In this work, we investigate the dimensional crossover from quasi-two-dim...The interplay between dimensionality and superconductivity is a central theme in understanding the behavior of low-dimensional superconductors. In this work, we investigate the dimensional crossover from quasi-two-dimensional(quasi-2D) to three-dimensional(3D) superconductivity in(Li,Fe)OHFeSe_(1-x)S_(x) single crystals driven by sulfur doping.Through detailed structural, electrical, and magnetic characterization, we identify a critical doping level(x = 0.53) where the system transitions from quasi-2D to 3D superconducting behavior. Reduced superconducting fluctuations and nonFermi liquid behavior near this critical point suggest the presence of competition between intralayer and interlayer pairing mechanisms. Fluctuation conductivity analysis reveals that the coherence length along the c-axis, ζ_(c)(0), and the interlayer coupling strength, Γ, increase significantly at x = 0.53, marking the onset of 3D superconductivity. These findings provide new insights into the role of dimensionality and interlayer coupling in modulating superconducting properties, positioning(Li,Fe)OHFeSe_(1-x)S_(x) as a unique platform for exploring crossover physics in iron-based superconductors.展开更多
This study introduces a novel mathematical model to describe the progression of cholera by integrating fractional derivatives with both singular and non-singular kernels alongside stochastic differential equations ove...This study introduces a novel mathematical model to describe the progression of cholera by integrating fractional derivatives with both singular and non-singular kernels alongside stochastic differential equations over four distinct time intervals.The model incorporates three key fractional derivatives:the Caputo-Fabrizio fractional derivative with a non-singular kernel,the Caputo proportional constant fractional derivative with a singular kernel,and the Atangana-Baleanu fractional derivative with a non-singular kernel.We analyze the stability of the core model and apply various numerical methods to approximate the proposed crossover model.To achieve this,the approximation of Caputo proportional constant fractional derivative with Grünwald-Letnikov nonstandard finite difference method is used for the deterministic model with a singular kernel,while the Toufik-Atangana method is employed for models involving a non-singular Mittag-Leffler kernel.Additionally,the integral Caputo-Fabrizio approximation and a two-step Lagrange polynomial are utilized to approximate the model with a non-singular exponential decay kernel.For the stochastic component,the Milstein method is implemented to approximate the stochastic differential equations.The stability and effectiveness of the proposed model and methodologies are validated through numerical simulations and comparisons with real-world cholera data from Yemen.The results confirm the reliability and practical applicability of the model,providing strong theoretical and empirical support for the approach.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa.However,genome-wide recombination landscape has not been reported in ciliates and it remains unkn...Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa.However,genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates:the synaptonemal complex(SC)-independent meiosis and the nuclear dimorphism.Here,we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny.We detect 1021 crossover(CO)events(35.8 per meiosis),corresponding to an overall CO rate of 9.9 cM/Mb.However,gene conversion by non-crossover is rare(1.03 per meiosis)and not biased towards G or C alleles.Consistent with the reported roles of SC in CO interference,we find no obvious sign of CO interference.CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions.Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes.We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.展开更多
In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the ...In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS–BEC[Bardeen–Cooper–Schrieffer(BCS), Bose–Einstein condensation(BEC)] crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe_(0.45)Te_(0.55) superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor.展开更多
Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is l...Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs.展开更多
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h...The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.展开更多
An intelligent crossover methodology within the genetic algorithm (GA) is explored within both mathematical and finite element arenas improving both design and solution convergence time. This improved intelligent cros...An intelligent crossover methodology within the genetic algorithm (GA) is explored within both mathematical and finite element arenas improving both design and solution convergence time. This improved intelligent crossover outperforms the traditional genetic algorithm combined with a rule-based approach utilizing domain specific knowledge developed by Webb, et al. [1]. The encoding of the improved crossover consists of two chromosome strings within the genetic algorithm where the first string represents the design or solution string, and the second string represents chromosome crossover string intelligence. This improved crossover methodology saves the best population members or designs evaluated from each generation and applies crossover chromosome intelligence to the best saved population members paired with globally selected parents. Enhanced features of this crossover methodology employ the random selection of the best designs from the prior generation as a potential parent coupled with alternating intelligence pairing methods. In addition to this approach, two globally selected parents possess the ability to mate utilizing crossover chromosome string intelligence maintaining the integrity of a global GA search. Overall, the final population following crossover employs both global and best generation design chromosome strings to maximize creativity while enhancing the solution search. This is a modification to a conventional GA that can be translated into GA encoding. This technique is explored initially through a Base 10 mathematical application followed by the examination of plate structural optimization considering stress and displacement constraints. Results from crossover intelligence are compared with the conventional genetic algorithm and from Webb, et al. [1] which illustrates the outcome of a two phase genetic optimization algorithm.展开更多
Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequ...Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequence while minimizing computation time. This combinatorial optimization approach is initially demonstrated by utilizing a traditional genetic algorithm (GA), followed by the incorporation of artificial intelligence utilizing embedded rules based on domain-specific knowledge. The aim of this initiative is to compare the results of the traditional and rule-based optimization approaches with results acquired through an intelligent crossover methodology. The intelligent crossover approach encompasses a two-dimensional GA encoding where a second chromosome string is introduced within the GA, offering a sophisticated means for chromosome crossover amongst selected parents. Additionally, parent selection intelligence is incorporated where the best-traversed paths or population members are retained and utilized as potential parents to mate with parents selected within a traditional GA methodology. A further enhancement regarding the utilization of saved optimal population members as potential parents is mathematically explored within this literature.展开更多
Repairing DNA double-strand breaks(DSBs)with homologous chromosomes as templates is the hallmark of meiosis.The critical outcome of meiotic homologous recombination is crossovers,which ensure faithful chromosome segre...Repairing DNA double-strand breaks(DSBs)with homologous chromosomes as templates is the hallmark of meiosis.The critical outcome of meiotic homologous recombination is crossovers,which ensure faithful chromosome segregation and promote genetic diversity of progenies.Crossover patterns are tightly controlled and exhibit three characteristics:obligatory crossover,crossover interference,and crossover homeostasis.Aberrant crossover patterns are the leading cause of infertility,miscarriage,and congenital disease.Crossover recombination occurs in the context of meiotic chromosomes,and it is tightly integrated with and regulated by meiotic chromosome structure both locally and globally.Meiotic chromosomes are organized in a loop-axis architecture.Diverse evidence shows that chromosome axis length determines crossover frequency.Interestingly,short chromosomes show different crossover patterns compared to long chromosomes.A high frequency of human embryos are aneuploid,primarily derived from female meiosis errors.Dramatically increased aneuploidy in older women is the well-known“maternal age effect.”However,a high frequency of aneuploidy also occurs in young women,derived from crossover maturation inefficiency in human females.In addition,frequency of human aneuploidy also shows other age-dependent alterations.Here,current advances in the understanding of these issues are reviewed,regulation of crossover patterns by meiotic chromosomes are discussed,and issues that remain to be investigated are suggested.展开更多
In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of ge...In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSP011-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors ofAtspoll-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSP011-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck pM and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd^2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.展开更多
Thermally regenerative batteries(TRBs) are promising for harvesting low-grade waste heat into electrical power. However, the ammonia crossover from anode to cathode causes self-discharge and then leads to the decay of...Thermally regenerative batteries(TRBs) are promising for harvesting low-grade waste heat into electrical power. However, the ammonia crossover from anode to cathode causes self-discharge and then leads to the decay of capacity. To alleviate the ammonia crossover and improve electricity generation, a stable graphene oxide(GO) modified anion exchange membrane(AEM) was proposed. Compared with the original AEM, the GO modified AEM with a 39.5% lower ammonia permeability induces a 24.3% higher maximal power output and 20.2% higher energy density in TRBs. Together with the visualization result,it was demonstrated the ammonia crossover was effectively alleviated by GO modifying the AEM not at a cost of the reduced battery performance, indicating the promising application in future TRBs.展开更多
Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenolog...Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas-Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength, anisotropic parameter and particle numbers of the condensate are discussed in detail.展开更多
文摘Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Efficient feature selection methods are critical for improving diagnostic accuracy,reducing computational costs,and enhancing the interpretability of predictive models.Particle Swarm Optimization(PSO),a widely used metaheuristic inspired by swarm intelligence,has shown considerable promise in feature selection tasks.However,conventional PSO often suffers from premature convergence and limited exploration capabilities,particularly in high-dimensional spaces.To overcome these limitations,this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-tion and a Crossover Operator(OrPSOC).Orthogonal Initialization ensures a diverse and uniformly distributed initial particle population,substantially improving the algorithm’s exploration capability.The Crossover Operator,inspired by genetic algorithms,introduces additional diversity during the search process,effectively mitigating premature convergence and enhancing global search performance.The effectiveness of OrPSOC was rigorously evaluated on three benchmark medical datasets—Colon,Leukemia,and Prostate Tumor.Comparative analyses were conducted against traditional filter-based methods,including Fast Clustering-Based Feature Selection Technique(Fast-C),Minimum Redundancy Maximum Relevance(MinRedMaxRel),and Five-Way Joint Mutual Information(FJMI),as well as prominent metaheuristic algorithms such as standard PSO,Ant Colony Optimization(ACO),Comprehensive Learning Gravitational Search Algorithm(CLGSA),and Fuzzy-Based CLGSA(FCLGSA).Experimental results demonstrated that OrPSOC consistently outperformed these existing methods in terms of classification accuracy,computational efficiency,and result stability,achieving significant improvements even with fewer selected features.Additionally,a sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on model performance.These findings highlight the superiority and robustness of the proposed OrPSOC approach for feature selection in medical diagnostic applications and underscore its potential for broader adoption in various high-dimensional,data-driven fields.
基金funding support by the National Science Foundation(NSF)under grant numbers CBET-2110603the Air Force Office of Scientific Research(AFOSR)under contract number FA9550-12-1-0225supported by the State of North Carolina and the National Science Foundation(award number ECCS-2025064).
文摘Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit(zT)without compromising electrical conductivity,using temperature-driven spin crossover.Our approach,supported by both theoretical and experimental evidence,is demonstrated through a case study of chromium doped-manganese telluride,but is not confined to this material and can be extended to other magnetic materials.By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover,we achieved a significant increase in thermopower,by approximately 136μV K^(-1),representing more than a 200%enhancement at elevated temperatures within the paramagnetic domain.Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower.These findings,validated by inelastic neutron scattering,X-ray photoemission spectroscopy,thermal transport,and energy conversion measurements,shed light on crucial material design parameters.We provide a comprehensive framework that analyzes the interplay between spin entropy,hopping transport,and magnon/paramagnon lifetimes,paving the way for the development of high-performance spin-driven thermoelectric materials.
基金the support from Yunnan Fundamental Research Projects(202301BE070001-029,202401CF070129,202501CF070181)National Natural Science Foundation of China(22209012,22479067)Kunming University of Science and Technology Analysis and Testing Fund Support Project(2023T20220172)。
文摘In order to maximize the advantages of high energy density in Li metal batteries,it is necessary to match cathode materials with high specific capacities.Ni-rich layered oxides have been shown to reversibly embed more Li+during charge and discharge processes due to the increased Ni content in their crystal structure,thereby providing higher energy density.However,a significant challenge associated with Ni-rich layered oxide cathodes is the crossover effect,which arises from the dissolution of Ni^(2+)from the cathode,leading to a rapid decline in battery capacity.Through the delocalization-induced effect of solvent molecules,Ni^(2+)is transformed into a fluorinated transition metal inorganic phase layer,thereby forming a corrosion-resistant Li metal interface.This prevents solvent molecules from being reduced and degraded by Li metal anode.The surface of the Li metal anode exhibits a smooth and flat deposition morphology after long-term cycling.Furthermore,the introduction of Ni^(2+)can enhance the concentration gradient of transition metal ions near the cathode,thereby suppressing the dissolution process of transition metal ions.Even the NCM955 cathode with a mass load of 22 mg cm^(−2)also has great capacity retention after cycling.The Ni^(2+)induced by high electronegative functional groups of solvent under the electron delocalization effect,preventing the Ni ions dissolution of cathode and constructing a corrosion-resistant Li metal interface layer.This work provides new insights into suppressing crossover effects in Li metal batteries with high nickel cathodes.
基金supported by the National Key R&D Program(Grant No.2022YFA1404102)the National Natural Science Foundation of China(Grant Nos.U23A2073,12374250,and 12121004)+1 种基金Chinese Academy of Sciences(Grant No.YJKYYQ20170025)Hubei Province(Grant No.2021CFA027).
文摘We report on the measurement of shear viscosity in an ultracold Fermi gas with variable temperatures and tunable interactions.A quadrupole mode excitation in an isotropic harmonic trap is used to quantify the shear viscosity of the quantum gas within the hydrodynamic regime.The shear viscosity of the system as a function of temperature has been investigated,and the results closely align with calculations in the high-temperature limit utilizing a new definition of the cutoff radius.Through an adiabatic sweep across the Bardeen–Cooper–Schrieffer(BCS)to Bose–Einstein condensate(BEC)crossover,we find that the minimum value of the shear viscosity,as a function of interaction strength,is significantly shifted toward the BEC side.Furthermore,the behavior of the shear viscosity is asymmetric on both sides of the location of the minimum.
基金supported by the National Natural Science Foundation of China(Grant Nos.92365202,12475011,and 11921005)the National Key R&D Program of China(Grant No.2024YFA1409002)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and extending this analysis to larger spin chains,we demonstrate that mixed-state entanglement is profoundly shaped by both disorder and temperature.Our results reveal a sharp distinction between many-body localized and ergodic phases,with entanglement vanishing above diferent fnite temperature thresholds.Furthermore,by analyzing non-adjacent spins,we uncover an approximate exponential decay of entanglement with separation.This work advances the understanding of the quantum-to-classical transition by linking the entanglement properties of small subsystems to the broader thermal environment,ofering an explanation for the absence of entanglement in macroscopic systems.These fndings provide critical insights into quantum many-body physics,bridging concepts from thermalization,localization,and quantum information theory.
文摘Background:Whether lactated Ringer's solution is clinically superior to normal saline for routine intravenous administration of fluids is uncertain.Methods:In an open-label,two-period,two-sequence,cross-sectional,cluster-randomized,crossover trial,we assigned hospitals in Ontario,Canada,to use either lactated Ringer's solution or normal saline hospital-wide for a period of 12 weeks.
基金supported by the National Natural Science Foundation of China(22171155)Natural Science Foundation of Shandong Province(ZR2022YQ07)Taishan Scholar Program(tsqn202306166).
文摘Transducing thermal energy into mechanical movements via molecular reconfigurations offers a cutting-edge approach to thermal actuating materials,which could be applied to sensors,energy harvesting and storage devices[1].Thermal expansion is a pivotal aspect in solid state chemistry,intricately intertwined with various factors such as crystal structure,chemical composition,electronic configuration,microstructure,and defects.Most materials undergo isotropic and positive thermal expansion(PTE)because of the disharmonic vibrational amplitudes of their chemical bonds.Moreover,anisotropic thermal expansion(ATE)and negative thermal expansion(NTE)are fascinating physical attributes of solids,which can originate from electronic or magnetic mechanisms,as well as through a transverse phonon mechanism in insulating lattice solids.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 52272268, 52250308, and 52102338)Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF016)Fundamental Research Funding of Universities directly under the Chinese Central Government (Grant No. 2-9-2022-038)。
文摘The interplay between dimensionality and superconductivity is a central theme in understanding the behavior of low-dimensional superconductors. In this work, we investigate the dimensional crossover from quasi-two-dimensional(quasi-2D) to three-dimensional(3D) superconductivity in(Li,Fe)OHFeSe_(1-x)S_(x) single crystals driven by sulfur doping.Through detailed structural, electrical, and magnetic characterization, we identify a critical doping level(x = 0.53) where the system transitions from quasi-2D to 3D superconducting behavior. Reduced superconducting fluctuations and nonFermi liquid behavior near this critical point suggest the presence of competition between intralayer and interlayer pairing mechanisms. Fluctuation conductivity analysis reveals that the coherence length along the c-axis, ζ_(c)(0), and the interlayer coupling strength, Γ, increase significantly at x = 0.53, marking the onset of 3D superconductivity. These findings provide new insights into the role of dimensionality and interlayer coupling in modulating superconducting properties, positioning(Li,Fe)OHFeSe_(1-x)S_(x) as a unique platform for exploring crossover physics in iron-based superconductors.
文摘This study introduces a novel mathematical model to describe the progression of cholera by integrating fractional derivatives with both singular and non-singular kernels alongside stochastic differential equations over four distinct time intervals.The model incorporates three key fractional derivatives:the Caputo-Fabrizio fractional derivative with a non-singular kernel,the Caputo proportional constant fractional derivative with a singular kernel,and the Atangana-Baleanu fractional derivative with a non-singular kernel.We analyze the stability of the core model and apply various numerical methods to approximate the proposed crossover model.To achieve this,the approximation of Caputo proportional constant fractional derivative with Grünwald-Letnikov nonstandard finite difference method is used for the deterministic model with a singular kernel,while the Toufik-Atangana method is employed for models involving a non-singular Mittag-Leffler kernel.Additionally,the integral Caputo-Fabrizio approximation and a two-step Lagrange polynomial are utilized to approximate the model with a non-singular exponential decay kernel.For the stochastic component,the Milstein method is implemented to approximate the stochastic differential equations.The stability and effectiveness of the proposed model and methodologies are validated through numerical simulations and comparisons with real-world cholera data from Yemen.The results confirm the reliability and practical applicability of the model,providing strong theoretical and empirical support for the approach.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金supported by the Wuhan Branch,Supercomputing Center,Chinese Academy of Sciences,Chinasupported by the National Aquatic Biological Resource Center(NABRC)+4 种基金supported by the Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(ZDBS-LY-SM026)the National Natural Science Foundation of China(32370457,32122015,32130011,31900316,and 31900339)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0480000)PJA3 grant of ARC Foundation(ARCPJA2021060003830)Equipes 2022 grant of Foundation Recherche Medicale(EQU202203014651).
文摘Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa.However,genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates:the synaptonemal complex(SC)-independent meiosis and the nuclear dimorphism.Here,we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny.We detect 1021 crossover(CO)events(35.8 per meiosis),corresponding to an overall CO rate of 9.9 cM/Mb.However,gene conversion by non-crossover is rare(1.03 per meiosis)and not biased towards G or C alleles.Consistent with the reported roles of SC in CO interference,we find no obvious sign of CO interference.CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions.Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes.We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.
基金Projects supported by the National Key Research and Development Program of China(GrantNos.2021YFA1401800,2022YFA1604200,2022YFA1403900,and2023YFA1406000)the National Natural Science Foundation of China(Grant Nos.12488201,12374066,12074411,and 12374154)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y2021006)the Synergetic Extreme Condition User Facility(SECUF)。
文摘In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS–BEC[Bardeen–Cooper–Schrieffer(BCS), Bose–Einstein condensation(BEC)] crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe_(0.45)Te_(0.55) superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor.
基金sponsored by the National Key R&D Program of China(2022YFB4602101)the Fundamental Research Funds for the Central Universities(2022ZFJH004 and 2024SMECP05)+2 种基金the National Natural Science Foundation of China(22278127 and 22378112)the Shanghai Pilot Program for Basic Research(22T01400100-18)the Postdoctoral Fellowship Program of CPSF(GZC20230801)。
文摘Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs.
基金the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,for funding this research work through Grant No.(221412020).
文摘The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.
文摘An intelligent crossover methodology within the genetic algorithm (GA) is explored within both mathematical and finite element arenas improving both design and solution convergence time. This improved intelligent crossover outperforms the traditional genetic algorithm combined with a rule-based approach utilizing domain specific knowledge developed by Webb, et al. [1]. The encoding of the improved crossover consists of two chromosome strings within the genetic algorithm where the first string represents the design or solution string, and the second string represents chromosome crossover string intelligence. This improved crossover methodology saves the best population members or designs evaluated from each generation and applies crossover chromosome intelligence to the best saved population members paired with globally selected parents. Enhanced features of this crossover methodology employ the random selection of the best designs from the prior generation as a potential parent coupled with alternating intelligence pairing methods. In addition to this approach, two globally selected parents possess the ability to mate utilizing crossover chromosome string intelligence maintaining the integrity of a global GA search. Overall, the final population following crossover employs both global and best generation design chromosome strings to maximize creativity while enhancing the solution search. This is a modification to a conventional GA that can be translated into GA encoding. This technique is explored initially through a Base 10 mathematical application followed by the examination of plate structural optimization considering stress and displacement constraints. Results from crossover intelligence are compared with the conventional genetic algorithm and from Webb, et al. [1] which illustrates the outcome of a two phase genetic optimization algorithm.
文摘Game theory is explored via a maze application where combinatorial optimization occurs with the objective of traversing through a defined maze with an aim to enhance decision support and locate the optimal travel sequence while minimizing computation time. This combinatorial optimization approach is initially demonstrated by utilizing a traditional genetic algorithm (GA), followed by the incorporation of artificial intelligence utilizing embedded rules based on domain-specific knowledge. The aim of this initiative is to compare the results of the traditional and rule-based optimization approaches with results acquired through an intelligent crossover methodology. The intelligent crossover approach encompasses a two-dimensional GA encoding where a second chromosome string is introduced within the GA, offering a sophisticated means for chromosome crossover amongst selected parents. Additionally, parent selection intelligence is incorporated where the best-traversed paths or population members are retained and utilized as potential parents to mate with parents selected within a traditional GA methodology. A further enhancement regarding the utilization of saved optimal population members as potential parents is mathematically explored within this literature.
基金This work is supported by grants from the National Key R&D Program of China(2018YFC1003700,2018YFC1003400)National Natural Science Foundation of China(31671293,31801203,and 31890782).
文摘Repairing DNA double-strand breaks(DSBs)with homologous chromosomes as templates is the hallmark of meiosis.The critical outcome of meiotic homologous recombination is crossovers,which ensure faithful chromosome segregation and promote genetic diversity of progenies.Crossover patterns are tightly controlled and exhibit three characteristics:obligatory crossover,crossover interference,and crossover homeostasis.Aberrant crossover patterns are the leading cause of infertility,miscarriage,and congenital disease.Crossover recombination occurs in the context of meiotic chromosomes,and it is tightly integrated with and regulated by meiotic chromosome structure both locally and globally.Meiotic chromosomes are organized in a loop-axis architecture.Diverse evidence shows that chromosome axis length determines crossover frequency.Interestingly,short chromosomes show different crossover patterns compared to long chromosomes.A high frequency of human embryos are aneuploid,primarily derived from female meiosis errors.Dramatically increased aneuploidy in older women is the well-known“maternal age effect.”However,a high frequency of aneuploidy also occurs in young women,derived from crossover maturation inefficiency in human females.In addition,frequency of human aneuploidy also shows other age-dependent alterations.Here,current advances in the understanding of these issues are reviewed,regulation of crossover patterns by meiotic chromosomes are discussed,and issues that remain to be investigated are suggested.
基金supported by funds from Fudan Universityfunds from Rijk Zwaan,the Netherlands,and the Biology Department and the Huck Institutes of the Life Sciences at the Pennsylvania State University in USA
文摘In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSP011-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors ofAtspoll-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSP011-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck pM and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd^2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.
基金supported by Innovative Research Group Project of National Natural Science Foundation of China (No. 52021004)National Natural Science Foundation of China (No. 51976018)+1 种基金Scientific Research Foundation for Returned Overseas Chinese Scholars of Chongqing, China (No. cx2021088)Research Funds of Key Laboratory of Low-grade Energy Utilization Technologies and Systems (No. LLEUTS-2018005)。
文摘Thermally regenerative batteries(TRBs) are promising for harvesting low-grade waste heat into electrical power. However, the ammonia crossover from anode to cathode causes self-discharge and then leads to the decay of capacity. To alleviate the ammonia crossover and improve electricity generation, a stable graphene oxide(GO) modified anion exchange membrane(AEM) was proposed. Compared with the original AEM, the GO modified AEM with a 39.5% lower ammonia permeability induces a 24.3% higher maximal power output and 20.2% higher energy density in TRBs. Together with the visualization result,it was demonstrated the ammonia crossover was effectively alleviated by GO modifying the AEM not at a cost of the reduced battery performance, indicating the promising application in future TRBs.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574028, 10775032 and J0730310)
文摘Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas-Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength, anisotropic parameter and particle numbers of the condensate are discussed in detail.