As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ...Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurr...Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.展开更多
Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can prov...Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can provide additional momentum and influence the scat-tering process involving one or two phonons,only the idealized defects without any structural details are considered in tra-ditional DRR theory.Here,the second-order DRR spectra of WSe_(2) monolayer with different types of defects are calculated involving the combinations of acoustic and optical phonons in the vicinity of K(K')and M points of the Brillouin zone.The electronic band structures are modified due to the presence of defects,and the band unfolding method is adopted to show the bending of valence and conduction bands for the defective WSe_(2) monolayers.The associ-ated phononic band structures also exhibit different changes in phonon dispersion curves,re-sulting in different DRR spectra corresponding to the different types of defects in the WSe_(2) monolayers.For example,the existence of W vacancy in the WSe_(2) monolayer would result in downshifts in vibrational frequencies and asymmetrical broadenings in linewidths for most combination modes due to the dramatic changes in contour shape of electronic valleys at K and K'.Moreover,the scattering from K to Q is found to be forbidden for the two Se vacan-cies because of the elevation of conduction band at the Q point.Our work highlights the role of defect structures in the intervalley scattering and may provide better understanding in the underlying physics of DRR process in 2D materials.展开更多
In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,a...In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,and structural size limitations associated with traditional rocket launches.This technology enables rapid on-orbit emergency repairs and significantly expands the geometric dimensions of space structures.High-performance polymers and their composites are widely used in in-space 3D printing,yet their implementation faces complex challenges posed by extreme space environmental conditions and limited energy or resources.This paper reviews the state-of-the-art in 3D printing of polymer and composites for on-orbit structure manufacturing.Based on existing research activities,the review focuses on three key aspects including the impact of extreme space environments on forming process and performance,innovative design and manufacturing methods for space structures,and on-orbit recycling and remanufacturing of raw materials.Some experiments that have already been conducted on-orbit and simulated experiments completed on the ground are systematically analyzed to provide a more comprehensive understanding of the constraints and objectives for on-orbit structure manufacturing.Furthermore,several perspectives requiring further research in future are proposed to facilitate the development of new in-space 3D printing technologies and space structures,thereby supporting increasingly advanced space exploration activities.展开更多
Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms ...Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms of scalability and mass production for practical application.In this work,we reported a successful attempt in modifying the 3D structure of mesoporous lanthanum oxide(La_(2)O_(3))for effective broadband MAMs candidate via simple co-precipitation process.The inclusion of cetyltrimethylammonium bromide(CTAB)and hydrothermal aging treatment result in a significant transformation of La_(2)O_(3)particles from their original polygonal form to a 3D coral-like and nano needle-like structure.The utilization of CTAB and hydrothermal aging results in the increase of surface area and a two-fold increase in pore volume of the resulting La_(2)O_(3).Due to its unique 3D structure,the 3D coral-like and nano needle-like La_(2)O_(3)materials possess a broadband electromagnetic(EM)wave absorption characteristic with the effective absorption bandwidth(EAB)covering the C-band frequency range.Specifically,in the La_(2)O_(3)C-H sample(with CTAB-with hydrothermal),it exhibits strong EM wave absorption with a reflection loss(RL)value of-33.07 dB which equals to 99.95%EM wave absorption at a thickness of only 1.50 mm.The detailed analysis of EM wave absorption properties reveals that the improvement of La_(2)O_(3)materials to attenuate EM wave energy arises from the dielectric loss phenomenon,the enhanced interfacial polarization,multiple reflections mechanism,and conduction loss mechanism induced by the 3D structural formation of the La_(2)O_(3)structure.This work proposes a novel and efficient approach in synthesizing and modifying 3D materials for effective broadband EM wave absorption.展开更多
Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium...Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration.展开更多
Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in re...Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.展开更多
Transforming a scattering medium into a lens for imaging very simple binary objects is possible;however,it remains challenging to image complex grayscale objects,let alone measure 3D continuous distribution objects.He...Transforming a scattering medium into a lens for imaging very simple binary objects is possible;however,it remains challenging to image complex grayscale objects,let alone measure 3D continuous distribution objects.Here,we propose and demonstrate the use of a ground glass diffuser as a scattering lens for imaging complex grayscale fringes,and we employ it to achieve microscopic structured light 3D imaging(MSL3DI).The ubiquitous property of the speckle patterns permits the exploitation of the scattering medium as an ultra-thin scattering lens with a variable focal length and a flexible working distance for microscale object measurement.The method provides a light,flexible,and cost-effective imaging device as an alternative to microscope objectives or telecentric lenses in conventional MSL3DI systems.We experimentally demonstrate that employing a scattering lens allows us to achieve relatively good phase information and robust 3D imaging from depth measurements,yielding measurement accuracy only marginally lower than that of a telecentric lens,typically within approximately 10μm.Furthermore,the scattering lens demonstrates robust performance even when the imaging distance exceeds the typical working distance of a telecentric lens.The proposed method facilitates the application of scattering imaging techniques,providing a more flexible solution for MSL3DI.展开更多
The influence of electronic structure on the performance of catalysts for peroxymonosulfate(PMS)activation remains ambiguous.In this study,the 3d electron configuration of Fe(Ⅲ)in AgFeO_(2) was atomically regulated u...The influence of electronic structure on the performance of catalysts for peroxymonosulfate(PMS)activation remains ambiguous.In this study,the 3d electron configuration of Fe(Ⅲ)in AgFeO_(2) was atomically regulated using cobalt doping.The amount of PMS adsorbed and the catalytic performance were positively correlated with the total effective magnetic moment and the ratios of high-spin Fe(Ⅲ)and eg filling within the catalysts.These 3d electron regulations favor PMS adsorption and electron transfer owing to the lower PMS adsorption energy,increased electronic states near the Fermi level,and reduced dz^(2) orbital occupancy.Benefiting from fine tailoring of the electron configuration,the AgFe_(0.80)Co_(0.20)O_(2) catalyst exhibited outstanding catalytic PMS activation and favorable application potential,achieving efficient pharmaceutical wastewater treatment and more than 80%ofloxacin removal after 72 h of continuous-flow operation.Notably,this study offers a comprehensive understanding for the influence mechanism of electronic structure regulation on PMS activation,providing design guidance for the development of efficient heterogeneous Fenton-like catalytic systems.展开更多
开发了一种使用直写成型(DIW)3D打印方法制备多孔TiO_(2)光催化降解筛的成型技术,厘清了打印浆料中P25粉末、TiO_(2)前驱体溶胶和聚乙烯醇(PVA)含量对其成型性能的影响规律;进一步研究了降解筛的物相组成、微观形貌、能带结构和载流子寿...开发了一种使用直写成型(DIW)3D打印方法制备多孔TiO_(2)光催化降解筛的成型技术,厘清了打印浆料中P25粉末、TiO_(2)前驱体溶胶和聚乙烯醇(PVA)含量对其成型性能的影响规律;进一步研究了降解筛的物相组成、微观形貌、能带结构和载流子寿命,并在模拟自然光下测定了其对盐酸四环素(TC)的光催化降解性能和循环稳定性.结果表明:TiO_(2)前驱体溶胶起到了分散P25颗粒和稳定浆料的作用,而PVA的加入则进一步改善了浆料的流变性能.当使用9 g P25粉末与10 mL TiO_(2)前驱体溶胶和1 mL质量分数为7%的PVA溶液混合时,得到了具有最佳成型性能的打印浆料,制备的降解筛结构完整,无塌陷和开裂.热处理后TiO_(2)前驱体溶胶转化而来的小粒径TiO_(2)填充在P25颗粒之间,起到了增强机械强度的作用,而PVA作为造孔剂极大地丰富了降解筛的孔隙结构.TiO_(2)光催化降解筛对TC表现出优异的光催化性能和循环稳定性,140 min内的降解率为98.4%,并在5次循环之后保持96.0%的降解率.展开更多
Mesostructured Co3O4-CeO2 composite was found to be an effective catalytic material for the complete oxidation of benzene. The Co3O4-CeO2 catalysts with different Co/Ce ratios (mol/mol) were prepared via the nanocas...Mesostructured Co3O4-CeO2 composite was found to be an effective catalytic material for the complete oxidation of benzene. The Co3O4-CeO2 catalysts with different Co/Ce ratios (mol/mol) were prepared via the nanocasting method and the mesostructure was replicated from two-dimensional (2D) hexagonal SBA-15 and three-dimensional (3D) cubic KIT-6 silicas, respectively. All the obtained Co3O4-CeO2 catalysts exhibited the similar symmetry with the parent silicas and well ordered mesostructures. The Co3O4- CeO2 catalysts with 2D mesostructure showed lower catalytic activities than the corresponding 3D materials. The Co3O4-CeO2 catalyst nanocasted from KIT-6 and with the Co/Ce ratio of 16/1 possessed the best catalytic benzene oxidation activity due to larger quantities of surface hydroxyl groups and surface oxygenated species. The mesostructured Co3O4-CeO2 material thus shows great potential as a promising eco-environmental catalyst for benzene effective elimination.展开更多
Two compounds,3-oxo-N-o-tolylbenzo[d]isothiazole-2(3H)-carboxamide (1) and N-(2-methoxyphenyl)-3-oxobenzo[d]isothiazole-2(3H)-carboxamide (2),were synthesized from the initial compound benzo[d]isothiazol-3...Two compounds,3-oxo-N-o-tolylbenzo[d]isothiazole-2(3H)-carboxamide (1) and N-(2-methoxyphenyl)-3-oxobenzo[d]isothiazole-2(3H)-carboxamide (2),were synthesized from the initial compound benzo[d]isothiazol-3(2H)-one (BIT) and characterized by 1 H NMR,IR and elemental analysis,respectively.The single crystals of compounds 1 and 2 were obtained and determined by X-ray diffraction analysis.The preliminary results of biological activity experiment show that some of the title compounds exhibited a favorable antimicrobial activity.展开更多
Fifteen novel 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl benzoates were synthesi- zed by the condensation of 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one with substituted benzoic acids in dichloromethane. All...Fifteen novel 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl benzoates were synthesi- zed by the condensation of 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one with substituted benzoic acids in dichloromethane. All the compounds were characterized by elemental analysis, IR, ESI-MS and 1H NMR. The crystal structures for 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one (2) and 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl 2-methoxybenzoate (30) have been determined by X-ray crystal structure analysis. Compound 2 (C9H9NO2S) crystallizes in the monoclinic system, space group Pn with a = 10.552(3), b = 7.849(2), c = 10.765(4) A, β = 103.128(4)°, V= 868.3(5) A3, Mr = 195.24, Dc = 1.493 Mg.m-3, μ = 0.33 mm-1, F(000) = 408, Z = 4, R= 0.0314 and wR= 0.0628. Compound 30 (C17H15NO4S) crystallizes in the triclinic system, space group P1 with a = 8.028(2), b = 9.300(2), c = 10.430(3)A, V= 752.1(3)A3, Mr = 329.36, D,= 1.454 Mg.m-3, p = 0.24 mm-1, F(000) = 344, Z = 2, R = 0.0377 and wR = 0.0904. The preliminary biological test indicated that the title compounds show better growth inhibitory activity against the gram-positive bacteria than the gram-negative bacteria.展开更多
Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and...Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.展开更多
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFE0207300)National Natural Science Foundation of China(Grant Nos.22179142 and 22075314)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB051 and 2023ZB836)the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金benefited from the financial support of the CAS Pioneer Hundred Talents Program and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0708)。
文摘Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia.
基金supported by the National Natural Sci-ence Foundation of China(No.22174135,No.21790352)the National Key R&D Program of China(No.2021YFA1500500,No.2016YFA0200600)+4 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)Anhui Initiative in Quantum Information Technologies(No.AHY090100)CAS Project for Young Scientists in Basic Research(No.YSBR-054)Innovation Program for Quantum Science and Technology(No.2021ZD0303301)the Fundamental Research Funds for the Central Universities.
文摘Double-resonance Raman(DRR)scattering in two-di-mensional(2D)materials describes the intravalley or intervalley scattering of an electron or a hole excited by incident photons.Although the presence of defects can provide additional momentum and influence the scat-tering process involving one or two phonons,only the idealized defects without any structural details are considered in tra-ditional DRR theory.Here,the second-order DRR spectra of WSe_(2) monolayer with different types of defects are calculated involving the combinations of acoustic and optical phonons in the vicinity of K(K')and M points of the Brillouin zone.The electronic band structures are modified due to the presence of defects,and the band unfolding method is adopted to show the bending of valence and conduction bands for the defective WSe_(2) monolayers.The associ-ated phononic band structures also exhibit different changes in phonon dispersion curves,re-sulting in different DRR spectra corresponding to the different types of defects in the WSe_(2) monolayers.For example,the existence of W vacancy in the WSe_(2) monolayer would result in downshifts in vibrational frequencies and asymmetrical broadenings in linewidths for most combination modes due to the dramatic changes in contour shape of electronic valleys at K and K'.Moreover,the scattering from K to Q is found to be forbidden for the two Se vacan-cies because of the elevation of conduction band at the Q point.Our work highlights the role of defect structures in the intervalley scattering and may provide better understanding in the underlying physics of DRR process in 2D materials.
基金supported by National Natural Science Foundation of China(Grant No.52205413)National Key Research and Development Program(Grant No.2022YFB3806101)+1 种基金K C Wong Education FoundationThe Youth Innovation Team of Shaanxi Universities。
文摘In-space 3D printing is transforming the manufacturing paradigm of space structures from ground-based production to in-situ space manufacturing,effectively addressing the challenges of high costs,long response times,and structural size limitations associated with traditional rocket launches.This technology enables rapid on-orbit emergency repairs and significantly expands the geometric dimensions of space structures.High-performance polymers and their composites are widely used in in-space 3D printing,yet their implementation faces complex challenges posed by extreme space environmental conditions and limited energy or resources.This paper reviews the state-of-the-art in 3D printing of polymer and composites for on-orbit structure manufacturing.Based on existing research activities,the review focuses on three key aspects including the impact of extreme space environments on forming process and performance,innovative design and manufacturing methods for space structures,and on-orbit recycling and remanufacturing of raw materials.Some experiments that have already been conducted on-orbit and simulated experiments completed on the ground are systematically analyzed to provide a more comprehensive understanding of the constraints and objectives for on-orbit structure manufacturing.Furthermore,several perspectives requiring further research in future are proposed to facilitate the development of new in-space 3D printing technologies and space structures,thereby supporting increasingly advanced space exploration activities.
基金Project supported by National Research and Innovation Agency through Rumah Program Organisasi Riset Nanoteknologi dan Material Maj u(ORNM)2024Indonesia Ministry of Finance through the competitive research program of RISPRO Kompetisi(PRJ-68/LPDP/2023)。
文摘Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms of scalability and mass production for practical application.In this work,we reported a successful attempt in modifying the 3D structure of mesoporous lanthanum oxide(La_(2)O_(3))for effective broadband MAMs candidate via simple co-precipitation process.The inclusion of cetyltrimethylammonium bromide(CTAB)and hydrothermal aging treatment result in a significant transformation of La_(2)O_(3)particles from their original polygonal form to a 3D coral-like and nano needle-like structure.The utilization of CTAB and hydrothermal aging results in the increase of surface area and a two-fold increase in pore volume of the resulting La_(2)O_(3).Due to its unique 3D structure,the 3D coral-like and nano needle-like La_(2)O_(3)materials possess a broadband electromagnetic(EM)wave absorption characteristic with the effective absorption bandwidth(EAB)covering the C-band frequency range.Specifically,in the La_(2)O_(3)C-H sample(with CTAB-with hydrothermal),it exhibits strong EM wave absorption with a reflection loss(RL)value of-33.07 dB which equals to 99.95%EM wave absorption at a thickness of only 1.50 mm.The detailed analysis of EM wave absorption properties reveals that the improvement of La_(2)O_(3)materials to attenuate EM wave energy arises from the dielectric loss phenomenon,the enhanced interfacial polarization,multiple reflections mechanism,and conduction loss mechanism induced by the 3D structural formation of the La_(2)O_(3)structure.This work proposes a novel and efficient approach in synthesizing and modifying 3D materials for effective broadband EM wave absorption.
基金supported by the National Key Research and Development Program of China(No.2019YFA0110600)the Science and Technology Support Program of Sichuan Province(No.2019YJ0161).
文摘Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration.
基金supported by the National Natural Science Foundation of China(No.52401221)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE014)+1 种基金the Basic Scientific Research Fund for Central Universities(No.202112018)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)。
文摘Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.
基金supported by the National Natural Science Foundation of China(Grant Nos.62275188 and 62505216)the Central Guidance on Local Science and Technology Development Fund(Grant No.YDZJSX2024D019)+1 种基金the International Scientific and Technological Cooperative Project in Shanxi Province(Grant No.202104041101009)the Natural Science Foundation of Shanxi Province of China through Research Project(Grant No.20210302123195).
文摘Transforming a scattering medium into a lens for imaging very simple binary objects is possible;however,it remains challenging to image complex grayscale objects,let alone measure 3D continuous distribution objects.Here,we propose and demonstrate the use of a ground glass diffuser as a scattering lens for imaging complex grayscale fringes,and we employ it to achieve microscopic structured light 3D imaging(MSL3DI).The ubiquitous property of the speckle patterns permits the exploitation of the scattering medium as an ultra-thin scattering lens with a variable focal length and a flexible working distance for microscale object measurement.The method provides a light,flexible,and cost-effective imaging device as an alternative to microscope objectives or telecentric lenses in conventional MSL3DI systems.We experimentally demonstrate that employing a scattering lens allows us to achieve relatively good phase information and robust 3D imaging from depth measurements,yielding measurement accuracy only marginally lower than that of a telecentric lens,typically within approximately 10μm.Furthermore,the scattering lens demonstrates robust performance even when the imaging distance exceeds the typical working distance of a telecentric lens.The proposed method facilitates the application of scattering imaging techniques,providing a more flexible solution for MSL3DI.
文摘The influence of electronic structure on the performance of catalysts for peroxymonosulfate(PMS)activation remains ambiguous.In this study,the 3d electron configuration of Fe(Ⅲ)in AgFeO_(2) was atomically regulated using cobalt doping.The amount of PMS adsorbed and the catalytic performance were positively correlated with the total effective magnetic moment and the ratios of high-spin Fe(Ⅲ)and eg filling within the catalysts.These 3d electron regulations favor PMS adsorption and electron transfer owing to the lower PMS adsorption energy,increased electronic states near the Fermi level,and reduced dz^(2) orbital occupancy.Benefiting from fine tailoring of the electron configuration,the AgFe_(0.80)Co_(0.20)O_(2) catalyst exhibited outstanding catalytic PMS activation and favorable application potential,achieving efficient pharmaceutical wastewater treatment and more than 80%ofloxacin removal after 72 h of continuous-flow operation.Notably,this study offers a comprehensive understanding for the influence mechanism of electronic structure regulation on PMS activation,providing design guidance for the development of efficient heterogeneous Fenton-like catalytic systems.
文摘开发了一种使用直写成型(DIW)3D打印方法制备多孔TiO_(2)光催化降解筛的成型技术,厘清了打印浆料中P25粉末、TiO_(2)前驱体溶胶和聚乙烯醇(PVA)含量对其成型性能的影响规律;进一步研究了降解筛的物相组成、微观形貌、能带结构和载流子寿命,并在模拟自然光下测定了其对盐酸四环素(TC)的光催化降解性能和循环稳定性.结果表明:TiO_(2)前驱体溶胶起到了分散P25颗粒和稳定浆料的作用,而PVA的加入则进一步改善了浆料的流变性能.当使用9 g P25粉末与10 mL TiO_(2)前驱体溶胶和1 mL质量分数为7%的PVA溶液混合时,得到了具有最佳成型性能的打印浆料,制备的降解筛结构完整,无塌陷和开裂.热处理后TiO_(2)前驱体溶胶转化而来的小粒径TiO_(2)填充在P25颗粒之间,起到了增强机械强度的作用,而PVA作为造孔剂极大地丰富了降解筛的孔隙结构.TiO_(2)光催化降解筛对TC表现出优异的光催化性能和循环稳定性,140 min内的降解率为98.4%,并在5次循环之后保持96.0%的降解率.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (No.20725723)the National Basic Research Program of China(No. 2010CB732300)the National High Technology Research and Development Program of China (No.2006AA06A310)
文摘Mesostructured Co3O4-CeO2 composite was found to be an effective catalytic material for the complete oxidation of benzene. The Co3O4-CeO2 catalysts with different Co/Ce ratios (mol/mol) were prepared via the nanocasting method and the mesostructure was replicated from two-dimensional (2D) hexagonal SBA-15 and three-dimensional (3D) cubic KIT-6 silicas, respectively. All the obtained Co3O4-CeO2 catalysts exhibited the similar symmetry with the parent silicas and well ordered mesostructures. The Co3O4- CeO2 catalysts with 2D mesostructure showed lower catalytic activities than the corresponding 3D materials. The Co3O4-CeO2 catalyst nanocasted from KIT-6 and with the Co/Ce ratio of 16/1 possessed the best catalytic benzene oxidation activity due to larger quantities of surface hydroxyl groups and surface oxygenated species. The mesostructured Co3O4-CeO2 material thus shows great potential as a promising eco-environmental catalyst for benzene effective elimination.
基金Supported by the National Natural Science Foundation of China (No. 20962007)the Creative Talents Plan of Hainan University 211 Project
文摘Two compounds,3-oxo-N-o-tolylbenzo[d]isothiazole-2(3H)-carboxamide (1) and N-(2-methoxyphenyl)-3-oxobenzo[d]isothiazole-2(3H)-carboxamide (2),were synthesized from the initial compound benzo[d]isothiazol-3(2H)-one (BIT) and characterized by 1 H NMR,IR and elemental analysis,respectively.The single crystals of compounds 1 and 2 were obtained and determined by X-ray diffraction analysis.The preliminary results of biological activity experiment show that some of the title compounds exhibited a favorable antimicrobial activity.
基金Supported by the National Natural Science Foundation of China (No. 20962007)
文摘Fifteen novel 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl benzoates were synthesi- zed by the condensation of 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one with substituted benzoic acids in dichloromethane. All the compounds were characterized by elemental analysis, IR, ESI-MS and 1H NMR. The crystal structures for 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one (2) and 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl 2-methoxybenzoate (30) have been determined by X-ray crystal structure analysis. Compound 2 (C9H9NO2S) crystallizes in the monoclinic system, space group Pn with a = 10.552(3), b = 7.849(2), c = 10.765(4) A, β = 103.128(4)°, V= 868.3(5) A3, Mr = 195.24, Dc = 1.493 Mg.m-3, μ = 0.33 mm-1, F(000) = 408, Z = 4, R= 0.0314 and wR= 0.0628. Compound 30 (C17H15NO4S) crystallizes in the triclinic system, space group P1 with a = 8.028(2), b = 9.300(2), c = 10.430(3)A, V= 752.1(3)A3, Mr = 329.36, D,= 1.454 Mg.m-3, p = 0.24 mm-1, F(000) = 344, Z = 2, R = 0.0377 and wR = 0.0904. The preliminary biological test indicated that the title compounds show better growth inhibitory activity against the gram-positive bacteria than the gram-negative bacteria.
文摘Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.