In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.In...In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.展开更多
基金supported by the European Union and the Romanian Government through the Competitiveness Operational Programme 2014–2020, under the project“Increasing the economic competitiveness of the forestry sector and the quality of life through knowledge transfer,technology and CDI skills”(CRESFORLIFE),ID P 40 380/105506, subsidiary contract no. 17/2020partially by the FORCLIMSOC Nucleu Programme (Contract 12N/2023)+2 种基金project PN 23090101CresPerfInst project (Contract 34PFE/December 30, 2021)“Increasing the institutional capacity and performance of INCDS ‘Marin Drǎcea’in RDI activities-CresPer”LM was financially supported by the Research Council of Finland's flagship ecosystem for Forest-Human-Machine Interplay–Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE)(decision number 357909)
文摘In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.