Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status...Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.展开更多
Background:Accurate classification of normal blood cells is a critical foundation for automated hematological analysis,including the detection of pathological conditions like leukemia.While convolutional neural networ...Background:Accurate classification of normal blood cells is a critical foundation for automated hematological analysis,including the detection of pathological conditions like leukemia.While convolutional neural networks(CNNs)excel in local feature extraction,their ability to capture global contextual relationships in complex cellular morphologies is limited.This study introduces a hybrid CNN-Transformer framework to enhance normal blood cell classification,laying the groundwork for future leukemia diagnostics.Methods:The proposed architecture integrates pre-trained CNNs(ResNet50,EfficientNetB3,InceptionV3,CustomCNN)with Vision Transformer(ViT)layers to combine local and global feature modeling.Four hybrid models were evaluated on the publicly available Blood Cell Images dataset from Kaggle,comprising 17,092 annotated normal blood cell images across eight classes.The models were trained using transfer learning,fine-tuning,and computational optimizations,including cross-model parameter sharing to reduce redundancy by reusing weights across CNN backbones and attention-guided layer pruning to eliminate low-contribution layers based on attention scores,improving efficiency without sacrificing accuracy.Results:The InceptionV3-ViT model achieved a weighted accuracy of 97.66%(accounting for class imbalance by weighting each class’s contribution),a macro F1-score of 0.98,and a ROC-AUC of 0.998.The framework excelled in distinguishing morphologically similar cell types demonstrating robustness and reliable calibration(ECE of 0.019).The framework addresses generalization challenges,including class imbalance and morphological similarities,ensuring robust performance across diverse cell types.Conclusion:The hybrid CNN-Transformer framework significantly improves normal blood cell classification by capturing multi-scale features and long-range dependencies.Its high accuracy,efficiency,and generalization position it as a strong baseline for automated hematological analysis,with potential for extension to leukemia subtype classification through future validation on pathological samples.展开更多
In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieram...In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.展开更多
Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analy...Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.展开更多
It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
Bamboo was carbonized at different temperatures ranging from 200℃to 600℃.The dependence of the change of hemicellulose,cellulose,and lignin on the temperature was investigated by means of elemental analysis and Four...Bamboo was carbonized at different temperatures ranging from 200℃to 600℃.The dependence of the change of hemicellulose,cellulose,and lignin on the temperature was investigated by means of elemental analysis and Fourier Transform Infrared(FTIR)spectra of the residual solid products.The results showed:(1)Below 200℃,hemicellulose in bamboo was de-composed and a large amount of hydroxyl groups are dislocated from hemicellulose and cellulose,accompanied by the evolu-tion of water to escape.(2)200℃-250℃,cellulose in bamboo was drastically decomposed whereas the net structure of lignin keep stable,with the except of the dislocation of methoxyl groups from lignin.(3)250℃~400℃,the net structure of lignin col-lapse,up to 400’℃,followed by that the more position in aryl groups are substituted.(4)For bamboo carbonization,the aroma-tization of residual carbon has approximately completed at the temperature as high as 600℃.But the fusion of aromatic rings possibly does not occur.展开更多
We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on t...We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.展开更多
With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode an...With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PLS) algorithm. The determination coefficients (R2) of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding.展开更多
After brief describing the Principle of wavelet transform (WT) of signals, a new signals analysis system based on wavelet transform is introduced. The design and development of the instryment of wavelet transform are ...After brief describing the Principle of wavelet transform (WT) of signals, a new signals analysis system based on wavelet transform is introduced. The design and development of the instryment of wavelet transform are described. A number of practical uses of this system demonstrate that wavelet transform system is specially functional in identifying and processing impulse, singular and non-smooth signals, so that it should be evaluated the most advanced signal analyzing system.展开更多
The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositio...The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.展开更多
Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT...Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were carried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.展开更多
Objective:There is vast literature on transformative learning,which is an important aspect of nursing education,but its meaning remains unclear.It is therefore important to clarify the meaning of transformative learni...Objective:There is vast literature on transformative learning,which is an important aspect of nursing education,but its meaning remains unclear.It is therefore important to clarify the meaning of transformative learning,identify its attributes,antecedents and consequences to increase its use in nursing education,practice and research.Methods:Walker and Avant's method was used,and the process provided a structured way to analyse the concept of'transfonnative leaming'.Nursing education dictionaries,encyclopaedias,conference papers,research articles,dissertations,theses,journal articles,thesauri and relevant books through the database library and intemet searches were reviewed.One hundred and two literature sources were reviewed,and data saturation was reached.Results:The results of the concept analysis of transformative learning within the context of nursing education identified three categories,namely,1)Antecedents as cognitive and affective perspective,democratic education principles and inspiration;2)Process through three phases,namely i)awareness through self-reflection,ii)the meaningful interactive,integrative and democratic construction process,and iii)metacognitive reasoning abilities;and 3)Outcomes.A theoretical definition of transformative learning was formulated.Theoretical validity was ensured.Conclusion:The results of the concept analysis of transformative learning were used to describe a model to facilitate transformative learning within the context of nursing education.展开更多
Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified imag...Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified image of input function.展开更多
High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite ...High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite core;their functions partly depend on this core characteristic. One of the characteristics of the ferrite core is thermal behavior that should be paid attention to because it affects the transformer function and causes heat generation. In this paper, a typical high frequency transformer with ferrite core is designed and simulated in ANSYS software. Temperature rise due to winding current (Joule-heat) is considered as heat generation source for thermal behavior analysis of the transformer. In this simulation, the temperature rise and heat distribution are studied and the effects of parameters such as flux density, winding loss value, using a fan to cool the winding and core and thermal conductivity are investigated.展开更多
Detection of minor faults in power transformer active part is essential because minor faults may develop and lead to major faults and finally irretrievable damages occur. Sweep Frequency Response Analysis (SFRA) is an...Detection of minor faults in power transformer active part is essential because minor faults may develop and lead to major faults and finally irretrievable damages occur. Sweep Frequency Response Analysis (SFRA) is an effective low-voltage, off-line diagnostic tool used for finding out any possible winding displacement or mechanical deterioration inside the Transformer, due to large electromechanical forces occurring from the fault currents or due to Transformer transportation and relocation. In this method, the frequency response of a transformer is taken both at manufacturing industry and concern site. Then both the response is compared to predict the fault taken place in active part. But in old aged transformers, the primary reference response is unavailable. So Cross Correlation Co-Efficient (CCF) measurement technique can be a vital process for fault detection in these transformers. In this paper, theoretical background of SFRA technique has been elaborated and through several case studies, the effectiveness of CCF parameter for fault detection has been represented.展开更多
At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important i...At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.展开更多
With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicalit...With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicality and reliability. In the traditional condition assessment method, due to the characteristics of the transformer’s complex structure, the assessment system is not comprehensive enough, or the assessment system is too complex, the indexes are not easy to quantify, such problems are emerging. The traditional method is complex and the degree of quantification is not enough. Therefore it is necessary to propose a condition assessment method that is easy to carry out the condition assessment work and does not affect the assessment results. In this paper, we propose a method to assess the state of the transformer’s complex structure. First, we establish a comprehensive assessment system, then apply the method of principal component analysis to optimize the index system, and then use the theory of cloud-matter-element. Finally the reliability and rationality of the method are verified by an example.展开更多
Sustainable income growth and poverty reduction remain critical challenges at the forefront of research in Pakistan,particularly in rural areas.To overcome these challenges,the role of rural transformation(RT)has emer...Sustainable income growth and poverty reduction remain critical challenges at the forefront of research in Pakistan,particularly in rural areas.To overcome these challenges,the role of rural transformation(RT)has emerged and gained importance in recent years.The present study is based on district-level data and covers the period from 1981 to 2019.The study attempts to quantify the role of rural transformation in boosting rural per capita income and alleviating rural poverty in the country.The study also aims to explore the impact of stages of rural transformation on rural per capita income and rural poverty alleviation.The empirical findings reveal that rural transformation(RT_(1)and RT_(2))is essential in enhancing rural per capita income and alleviating rural poverty.The role of the share of high-value crops(RT_(1))is more pronounced than the share of non-farm employment(RT_(2))in boosting rural per capita income and poverty alleviation.The trend of larger contribution of RT_(1)to enhance rural per capita income also continued at 2nd stage of rural transformation.In the case of poverty reduction,at 3rd stage of rural transformation,the role of RT_(2)is dominant.Our results indicate that districts at higher stages of rural transformation(both RT_(1)and RT_(2))tend to correlate positively with increased rural per capita income and reduced poverty rates,suggesting that progress in rural transformation is associated with improved economic conditions.However,it is important to note that this correlation does not necessarily imply a direct causal relationship between rural transformation and these economic outcomes;other factors may have influenced this relationship.In addition,the welfare impacts are more noticeable among the districts where a simultaneous shift from grain crops to cash crops and from farm employment to non-farm employment is observed.The study provides baseline information to learn experiences from fast-growing districts and to replicate the strategies in other districts,which boosts the RT process that may increase rural per capita income and enhance poverty reduction efforts.展开更多
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
基金supported by the Deanship of Research and Graduate Studies at King Khalid University under Small Research Project grant number RGP1/139/45.
文摘Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.
基金the Deanship of Graduate Studies and Scientific Research at Najran University,Saudi Arabia,for their financial support through the Easy Track Research program,grant code(NU/EFP/MRC/13).
文摘Background:Accurate classification of normal blood cells is a critical foundation for automated hematological analysis,including the detection of pathological conditions like leukemia.While convolutional neural networks(CNNs)excel in local feature extraction,their ability to capture global contextual relationships in complex cellular morphologies is limited.This study introduces a hybrid CNN-Transformer framework to enhance normal blood cell classification,laying the groundwork for future leukemia diagnostics.Methods:The proposed architecture integrates pre-trained CNNs(ResNet50,EfficientNetB3,InceptionV3,CustomCNN)with Vision Transformer(ViT)layers to combine local and global feature modeling.Four hybrid models were evaluated on the publicly available Blood Cell Images dataset from Kaggle,comprising 17,092 annotated normal blood cell images across eight classes.The models were trained using transfer learning,fine-tuning,and computational optimizations,including cross-model parameter sharing to reduce redundancy by reusing weights across CNN backbones and attention-guided layer pruning to eliminate low-contribution layers based on attention scores,improving efficiency without sacrificing accuracy.Results:The InceptionV3-ViT model achieved a weighted accuracy of 97.66%(accounting for class imbalance by weighting each class’s contribution),a macro F1-score of 0.98,and a ROC-AUC of 0.998.The framework excelled in distinguishing morphologically similar cell types demonstrating robustness and reliable calibration(ECE of 0.019).The framework addresses generalization challenges,including class imbalance and morphological similarities,ensuring robust performance across diverse cell types.Conclusion:The hybrid CNN-Transformer framework significantly improves normal blood cell classification by capturing multi-scale features and long-range dependencies.Its high accuracy,efficiency,and generalization position it as a strong baseline for automated hematological analysis,with potential for extension to leukemia subtype classification through future validation on pathological samples.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.
基金the financial support of the National Key Basic Research Foundation of China (Project G19990650), the National Natural Science Foundation of China (Project 50071054) and the financial support of State Key
文摘Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.
基金supported by the National Natural Science Foundation of China(61571088)the State High-Tech Development Plan(the 863 Program)(2015AA7031093B2015AA8098088B)
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.
基金This paper was supported by the Innovation Project of Nanjing Forestry University.
文摘Bamboo was carbonized at different temperatures ranging from 200℃to 600℃.The dependence of the change of hemicellulose,cellulose,and lignin on the temperature was investigated by means of elemental analysis and Fourier Transform Infrared(FTIR)spectra of the residual solid products.The results showed:(1)Below 200℃,hemicellulose in bamboo was de-composed and a large amount of hydroxyl groups are dislocated from hemicellulose and cellulose,accompanied by the evolu-tion of water to escape.(2)200℃-250℃,cellulose in bamboo was drastically decomposed whereas the net structure of lignin keep stable,with the except of the dislocation of methoxyl groups from lignin.(3)250℃~400℃,the net structure of lignin col-lapse,up to 400’℃,followed by that the more position in aryl groups are substituted.(4)For bamboo carbonization,the aroma-tization of residual carbon has approximately completed at the temperature as high as 600℃.But the fusion of aromatic rings possibly does not occur.
文摘We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.
文摘With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PLS) algorithm. The determination coefficients (R2) of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding.
基金This project is supported by National Natural Science Foundation of China
文摘After brief describing the Principle of wavelet transform (WT) of signals, a new signals analysis system based on wavelet transform is introduced. The design and development of the instryment of wavelet transform are described. A number of practical uses of this system demonstrate that wavelet transform system is specially functional in identifying and processing impulse, singular and non-smooth signals, so that it should be evaluated the most advanced signal analyzing system.
基金the financial support from the National Natual Science Foundation of China(No.51375491)the Natural Science Foundation of Chongqing(Project No.2011JJA90020)the Science Foundation for Young Teachers of Logistical Engineering University
文摘The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.
基金Supported by Tianjin Municipal Science and Technology Commission (No.09JCYBJC02200)
文摘Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were carried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.
基金The research study was financially supported by the researcher and the partial funding of Supervisor bursaries as awarded by the University of Johannesburg.
文摘Objective:There is vast literature on transformative learning,which is an important aspect of nursing education,but its meaning remains unclear.It is therefore important to clarify the meaning of transformative learning,identify its attributes,antecedents and consequences to increase its use in nursing education,practice and research.Methods:Walker and Avant's method was used,and the process provided a structured way to analyse the concept of'transfonnative leaming'.Nursing education dictionaries,encyclopaedias,conference papers,research articles,dissertations,theses,journal articles,thesauri and relevant books through the database library and intemet searches were reviewed.One hundred and two literature sources were reviewed,and data saturation was reached.Results:The results of the concept analysis of transformative learning within the context of nursing education identified three categories,namely,1)Antecedents as cognitive and affective perspective,democratic education principles and inspiration;2)Process through three phases,namely i)awareness through self-reflection,ii)the meaningful interactive,integrative and democratic construction process,and iii)metacognitive reasoning abilities;and 3)Outcomes.A theoretical definition of transformative learning was formulated.Theoretical validity was ensured.Conclusion:The results of the concept analysis of transformative learning were used to describe a model to facilitate transformative learning within the context of nursing education.
文摘Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified image of input function.
文摘High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite core;their functions partly depend on this core characteristic. One of the characteristics of the ferrite core is thermal behavior that should be paid attention to because it affects the transformer function and causes heat generation. In this paper, a typical high frequency transformer with ferrite core is designed and simulated in ANSYS software. Temperature rise due to winding current (Joule-heat) is considered as heat generation source for thermal behavior analysis of the transformer. In this simulation, the temperature rise and heat distribution are studied and the effects of parameters such as flux density, winding loss value, using a fan to cool the winding and core and thermal conductivity are investigated.
文摘Detection of minor faults in power transformer active part is essential because minor faults may develop and lead to major faults and finally irretrievable damages occur. Sweep Frequency Response Analysis (SFRA) is an effective low-voltage, off-line diagnostic tool used for finding out any possible winding displacement or mechanical deterioration inside the Transformer, due to large electromechanical forces occurring from the fault currents or due to Transformer transportation and relocation. In this method, the frequency response of a transformer is taken both at manufacturing industry and concern site. Then both the response is compared to predict the fault taken place in active part. But in old aged transformers, the primary reference response is unavailable. So Cross Correlation Co-Efficient (CCF) measurement technique can be a vital process for fault detection in these transformers. In this paper, theoretical background of SFRA technique has been elaborated and through several case studies, the effectiveness of CCF parameter for fault detection has been represented.
基金the National Key Research and Development Program of China(2017YFB0903200).
文摘At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.
文摘With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicality and reliability. In the traditional condition assessment method, due to the characteristics of the transformer’s complex structure, the assessment system is not comprehensive enough, or the assessment system is too complex, the indexes are not easy to quantify, such problems are emerging. The traditional method is complex and the degree of quantification is not enough. Therefore it is necessary to propose a condition assessment method that is easy to carry out the condition assessment work and does not affect the assessment results. In this paper, we propose a method to assess the state of the transformer’s complex structure. First, we establish a comprehensive assessment system, then apply the method of principal component analysis to optimize the index system, and then use the theory of cloud-matter-element. Finally the reliability and rationality of the method are verified by an example.
基金We highly acknowledge the financial support of the Australian Centre for International Agricultural Research(ACIAR),Australia(ADP/2017/024)。
文摘Sustainable income growth and poverty reduction remain critical challenges at the forefront of research in Pakistan,particularly in rural areas.To overcome these challenges,the role of rural transformation(RT)has emerged and gained importance in recent years.The present study is based on district-level data and covers the period from 1981 to 2019.The study attempts to quantify the role of rural transformation in boosting rural per capita income and alleviating rural poverty in the country.The study also aims to explore the impact of stages of rural transformation on rural per capita income and rural poverty alleviation.The empirical findings reveal that rural transformation(RT_(1)and RT_(2))is essential in enhancing rural per capita income and alleviating rural poverty.The role of the share of high-value crops(RT_(1))is more pronounced than the share of non-farm employment(RT_(2))in boosting rural per capita income and poverty alleviation.The trend of larger contribution of RT_(1)to enhance rural per capita income also continued at 2nd stage of rural transformation.In the case of poverty reduction,at 3rd stage of rural transformation,the role of RT_(2)is dominant.Our results indicate that districts at higher stages of rural transformation(both RT_(1)and RT_(2))tend to correlate positively with increased rural per capita income and reduced poverty rates,suggesting that progress in rural transformation is associated with improved economic conditions.However,it is important to note that this correlation does not necessarily imply a direct causal relationship between rural transformation and these economic outcomes;other factors may have influenced this relationship.In addition,the welfare impacts are more noticeable among the districts where a simultaneous shift from grain crops to cash crops and from farm employment to non-farm employment is observed.The study provides baseline information to learn experiences from fast-growing districts and to replicate the strategies in other districts,which boosts the RT process that may increase rural per capita income and enhance poverty reduction efforts.