Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technol...Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technology is not confined to the virtual domain but rather has a tangible influence on our daily lives and the surrounding environment,the extensive integration and potential of digital technologies offer a distinctive prospect to fundamentally transform our shared comprehension of architecture.Digital technologies are revolutionizing design practices,manufacturing processes,and our engagement with and understanding of the built environment,by fostering the development of novel models that promote equity and inclusivity.The application of“digital technologies”can function as a methodology for examining and expressing the possible paths of emerging digital technologies.Extrapolate the expected impact of digital technologies on the design,development,and occupancy of the environment to achieve a more sustainable future in the long run.This paper will examine the potential connections and origins of digital technology concerning modularity,as well as the implications of modularity on forthcoming architectural developments in customization.展开更多
Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous...Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.展开更多
Lignans have been established as a privileged scaffold in drug discovery,particularly in anticancer and antioxidant properties.Concise and efficient construction of lignans and their derivatives in a single operation ...Lignans have been established as a privileged scaffold in drug discovery,particularly in anticancer and antioxidant properties.Concise and efficient construction of lignans and their derivatives in a single operation holds great medicinal significance for structure-activity relationship studies yet remains challenging.Drawing inspiration from the biosynthesis of lignans,we present a general,high-step-economy palladium-catalyzed reaction that converts simple chemical feedstocks into dehydrodibenzylbutyrolactone lignans through the in-situ construction and coupling of two phenylpropanoid molecules.The diversity of organoboronic acids and the editability of enyne provide a powerful platform for the rapid construction of lignan libraries,featuring 82 lignans analogs,collective syntheses of 10 distinct lignan skeletons,and 13 hybrid molecules combining pharmacophore fragments with drug and derivatives.The subtle combination of phosphine ligands with quinones for switching chemoselectivity is vital to the success of this protocol.展开更多
As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mis...As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mission planning,where path planning and target assignment are tightly coupled.In this paper,we focus on UAV mission planning under carrier delivery mode(e.g.,by aircraft carrier,ground vehicle,or transport aircraft) and design a three-layer hierarchical solution framework.In the first layer,we simultaneously determine delivery points and target set division by clustering.To address the safety concerns of radar risk and UAV endurance,an improved density peak clustering algorithm is developed by constraint fusio n.In the second layer,mission planning within each cluster is viewed as a coope rative multiple-task assignment problem.A hybrid heuristic algorithm that integrates a voting-based heuristic solution generation strategy(VHSG) and a stochastic variable neighborhood search(SVNS),called VHSG-SVNS,is proposed for rapid solution.Based on the results of the first two layers,the third layer transforms carrier path planning into a multiple-vehicle routing problem with time window.The cost between any two nodes is calculated by the A~* algorithm,and the genetic algorithm is then implemented to determine the global route.Finally,a practical mission scenario containing 200 targets is used to validate the effectiveness of the designed framework,where three layers cooperate well with each other to generate satisfactory combat scheduling.Comparisons are made in each layer to highlight optimum-seeking capability and efficiency of the proposed algorithms.Works done in this paper provide a simple but efficient solution framework for cross-platform cooperative mission planning problems,and can be potentially extended to other applications such as post-disaster search and rescue,forest surveillance and firefighting,logistics pick and delivery,etc.展开更多
The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover contro...The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover control of the combination through multiple independent modules,including the controller and actuator modules,remains a challenge.In this paper,a robust takeover control scheme with high allocation accuracy,independent of precise inertia,is proposed for the reconfigurable combination in the presence of the inertia uncertainty,model parameters uncertainty,communication delay,and external disturbance.By reregulating the conditions for performance synthesis into a symmetric form with similar structure,a hybrid non-fragile H_(2)/H_(∞)controller is designed for handling two types of controller gain perturbations,achieving superior performance with less energy consumption through simultaneous perturbation suppression.Moreover,through temporarily storing the allocation signals in the initial stage to cover the upper bound of the communication delay,the proposed distributed dynamic allocation scheme enables the actuator modules to implement the control signals jointly to stabilize the combination.Distinguished from general allocators,the proposed high-precision allocation scheme under communication delay can not only ensure full exploitation of controller performance,but also dynamically adjust allocation coefficients based on energy consumption index of controller modules to prevent actuator saturation.Numerical simulations demonstrate the superiority of the proposed hybrid non-fragile controller and the allocation scheme.展开更多
This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameter...This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.展开更多
Consistency identification in task-oriented dialogue(CI-ToD)can prevent inconsistent dialogue response generation,which has recently emerged as an important and growing research area.This paper takes the first step to...Consistency identification in task-oriented dialogue(CI-ToD)can prevent inconsistent dialogue response generation,which has recently emerged as an important and growing research area.This paper takes the first step to explore a pre-training paradigm for CI-ToD.Nevertheless,pre-training for CI-ToD is non-trivial because it requires a large amount of multi-turn KB-grounded dialogues,which are extremely hard to collect.To alleviate the data scarcity problem for pre-training,we introduce a modularized pre-training framework(MPFToD),which is capable of utilizing large amounts of KB-free dialogues.Specifically,such modularization allows us to decouple CI-ToD into three sub-modules and propose three pre-training tasks including(i)query response matching pre-training;(ii)dialogue history consistent identification pre-training;and(iii)KB mask language modeling to enhance different abilities of CI-ToD model.As different sub-tasks are solved separately,MPFToD can learn from large amounts of KB-free dialogues for different modules,which are much easier to obtain.Results on the CI-ToD benchmark show that MPFToD pushes the state-of-the-art performance from 56.3%to 61.0%.Furthermore,we show its transferability with promising performance on other downstream tasks(i.e.,dialog act recognition,sentiment classification and table fact checking).展开更多
Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems...Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.展开更多
With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has b...With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.展开更多
In clinical practice,the irregular shapes of traumas pose a significant challenge in rapidly manufacturing personalized scaffolds.To address these challenges,inspired by LEGO■ bricks,this study proposed a novel conce...In clinical practice,the irregular shapes of traumas pose a significant challenge in rapidly manufacturing personalized scaffolds.To address these challenges,inspired by LEGO■ bricks,this study proposed a novel concept of modular scaffolds and developed an innovative system based on machine vision for their rapid and intelligent assembly tailored to defect shapes.Trapezoidal interfaces effectively connect standardized bone units based on magnesium-doped silicate calcium,ensuring high stability of the modular scaffolds,with compressive strength up to 135 MPa and bending strength up to 17 MPa.Through self-developed defect recognition and reconstruction algorithms,defect recognition and personalized assembly schemes for bone scaffolds can be achieved autonomously.Modular scaffolds seamlessly integrate with surrounding bone tissue,promoting new bone growth,with no apparent differences compared to fully 3D printed integral scaffolds in the skull and femur repair experiments.In summary,the adoption of modular scaffolds not only integrates personalization and standardization but also satisfies the optimal treatment window.展开更多
This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-coo...This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.展开更多
Given the rapid growth of sustainable construction strategies globally and the importance of resiliency in civil infrastructure,it is crucial to adopt best practices.Modular construction is one such practice and is co...Given the rapid growth of sustainable construction strategies globally and the importance of resiliency in civil infrastructure,it is crucial to adopt best practices.Modular construction is one such practice and is considered a better alternative to conventional construction in terms of resilience,construction times,resource efficiency,and sustainability.However,the continued expansion of modular construction relies on quantifying and evaluating its sustainability and the purported benefits.This paper develops and checks feasibility through an integrated multi-level decision support framework to empirically evaluate the sustainability performances of single-family residential modular homes.Criteria and indicator development and calculation,benchmark scale establishment,quantitative and qualitative data collection from literature and surveys,and multi-criteria decision analysis are unique aspects of this framework.The results of the two case studies located in the Okanagan region,Canada showed that modular homes perform at a higher level of sustainability than their conventional counterparts across multiple metrics and levels related to environmental and economic factors.The modular homes scored eco-efficiency values of 62.5 and 56.0,respectively and fell into higher performance range.The proposed frame-work offers flexibility in examining different dimensions of sustainability,providing valuable insights into the key parameters that need to be addressed to enhance overall sustainability.This research,which integrates life cycle thinking and decision-making,helps the construction industry and,municipalities,governments,and pol-icymakers in making informed decisions on the selection of suitable construction methods in city developments and move towards a more resilient and sustainable sector.展开更多
A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius ...A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius extension applying ground mobility and overall flight envelope extension using fixed-wing aerodynamics.Also,some lessons learned from NASA Mars Ingenuity flights are considered and addressed with few solutions.The modular system includes a fixed-wing design along with a number of smaller autonomous quadcopter UAVs,encapsulated inside a geodesic spherical support through a gimbal mechanism for ground mobility.Analyzed is the feasibility of allocating to these mini drones both scout and mapping tasks of complex terrain such as crater walls,canyons and cave systems that might hold key insights into the planet's geologic history.Once docked with the mothership fixed wing,the mini drones serve as a distributed propulsion system,for vertical take-off and landing and control,completely replacing control surfaces on the flying wing itself,its engine and landing gear.CFD and structural simulations have demonstrated the flight-ability in Mars conditions of a flying wing design along with scout drone prototypes with a pentagon-hexagon geodesic shell.Also demonstrated is the great flexibility of the suggested modular approach for various research applications and mission profiles on Mars and other planets or moons,improving overall reliability and mission radius.展开更多
The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To...The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To solve this problem,the small friction pendulum bearing(FPB)isolation design is proposed for modular pressurized buildings.Firstly,a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings.The reasonability of the simplified model is verified by comparing the refined finite element model.Subsequently,according to the FPB design process for modular pressurized buildings,a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes.Lastly,the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis.The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility,respectively.When adopting FPBs,the response of the structure is significantly reduced,and the seismic isolation effect is obvious.The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly.It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas.展开更多
1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation ...1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation platforms are essential in this area,as they simulate agent behaviors in set environments and tasks,thereby accelerating algorithm validation and optimization.However,constructing such a platform presents several challenges.展开更多
Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according...Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.展开更多
The shape of a spacecraft is transitioning from monolithic,manual,and static to modular,autonomous,and dynamic.Modular Reconfigurable Spacecrafts(MRSs)offer better solutions than traditional monolithic spacecrafts in ...The shape of a spacecraft is transitioning from monolithic,manual,and static to modular,autonomous,and dynamic.Modular Reconfigurable Spacecrafts(MRSs)offer better solutions than traditional monolithic spacecrafts in several aspects,and may become the next generation of spacecraft systems with efficient design,fast deployment,flexible application,and convenient management.This paper reviews the development and technology of MRS from three aspects:Modularity,reconfigurability,and autonomy.Despite the progress of research on MRS,there is still a lack of unified standards and little understanding of related concepts.Based on the understanding of basic concepts,the studies conducted on MRS are reviewed to identify technical requirements and solutions.Aiming at the future development trend of MRS,a novel modular selfreconfigurable spacecraft,referred to as MagicSat,is proposed.Furthermore,the MagicSat system composition,advantages,and application prospects are studied.The enabling technologies and major challenges of MRS are further analyzed in terms of modularization,integrated management,and self-reconfiguration technologies.Finally,the future development trend of MRS technology is predicted,and corresponding suggestions are provided.展开更多
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existe...Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.展开更多
A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and m...A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and matrix modularity analysis, a novel prediction method is proposed through investigating the correlating influence of three key measurements: relationship strength, pillars, and change frequency of a forum topic. The method demonstrates that there exist some macroscopic and potential laws for forum situation prediction. Extensive experiments over large many datasets show the efficiency and effectiveness of the algorithms.展开更多
A novel mobile self-reconfigurable robot is presented. This robot consists of several independent units. Each unit is composed of modular components including ultrasonic sensor, camera, communication, computation, and...A novel mobile self-reconfigurable robot is presented. This robot consists of several independent units. Each unit is composed of modular components including ultrasonic sensor, camera, communication, computation, and mobility parts, and is capable of simple self-reconfiguring to enhance its mobility by expanding itself. Several units can not only link into a train or other shapes autonomously via camera and sensors to be a united whole robot for obstacle clearing, but also disjoin to be separate units under control after missions. To achieve small overall size, compact mechanical structures are adopted in modular components design, and a miniature advanced RISC machines (ARM) based embedded controller is developed for minimal power consumption and efficient global control. The docking experiment between two units has also been implemented.展开更多
文摘Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technology is not confined to the virtual domain but rather has a tangible influence on our daily lives and the surrounding environment,the extensive integration and potential of digital technologies offer a distinctive prospect to fundamentally transform our shared comprehension of architecture.Digital technologies are revolutionizing design practices,manufacturing processes,and our engagement with and understanding of the built environment,by fostering the development of novel models that promote equity and inclusivity.The application of“digital technologies”can function as a methodology for examining and expressing the possible paths of emerging digital technologies.Extrapolate the expected impact of digital technologies on the design,development,and occupancy of the environment to achieve a more sustainable future in the long run.This paper will examine the potential connections and origins of digital technology concerning modularity,as well as the implications of modularity on forthcoming architectural developments in customization.
文摘Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.
基金Financial support was provided by the State Key Laboratory of Pulp and Paper Engineering(No.2022PY01)the National Natural Science Foundation of China(Nos.22231002 and 21871095)the Key-Area Research and Development Program of Guangdong Province(No.2020B010188001)。
文摘Lignans have been established as a privileged scaffold in drug discovery,particularly in anticancer and antioxidant properties.Concise and efficient construction of lignans and their derivatives in a single operation holds great medicinal significance for structure-activity relationship studies yet remains challenging.Drawing inspiration from the biosynthesis of lignans,we present a general,high-step-economy palladium-catalyzed reaction that converts simple chemical feedstocks into dehydrodibenzylbutyrolactone lignans through the in-situ construction and coupling of two phenylpropanoid molecules.The diversity of organoboronic acids and the editability of enyne provide a powerful platform for the rapid construction of lignan libraries,featuring 82 lignans analogs,collective syntheses of 10 distinct lignan skeletons,and 13 hybrid molecules combining pharmacophore fragments with drug and derivatives.The subtle combination of phosphine ligands with quinones for switching chemoselectivity is vital to the success of this protocol.
文摘As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mission planning,where path planning and target assignment are tightly coupled.In this paper,we focus on UAV mission planning under carrier delivery mode(e.g.,by aircraft carrier,ground vehicle,or transport aircraft) and design a three-layer hierarchical solution framework.In the first layer,we simultaneously determine delivery points and target set division by clustering.To address the safety concerns of radar risk and UAV endurance,an improved density peak clustering algorithm is developed by constraint fusio n.In the second layer,mission planning within each cluster is viewed as a coope rative multiple-task assignment problem.A hybrid heuristic algorithm that integrates a voting-based heuristic solution generation strategy(VHSG) and a stochastic variable neighborhood search(SVNS),called VHSG-SVNS,is proposed for rapid solution.Based on the results of the first two layers,the third layer transforms carrier path planning into a multiple-vehicle routing problem with time window.The cost between any two nodes is calculated by the A~* algorithm,and the genetic algorithm is then implemented to determine the global route.Finally,a practical mission scenario containing 200 targets is used to validate the effectiveness of the designed framework,where three layers cooperate well with each other to generate satisfactory combat scheduling.Comparisons are made in each layer to highlight optimum-seeking capability and efficiency of the proposed algorithms.Works done in this paper provide a simple but efficient solution framework for cross-platform cooperative mission planning problems,and can be potentially extended to other applications such as post-disaster search and rescue,forest surveillance and firefighting,logistics pick and delivery,etc.
基金co-supported by the National Natural Science Foundation of China(No.12372048)the China Postdoctoral Science Foundation(No.2023M742835)+3 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011421)the Aeronautical Science Foundation of China(No.2022Z004053001)the Fundamental Research Funds for the Central Universities,China(No.D5000210833)the Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20220509)。
文摘The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover control of the combination through multiple independent modules,including the controller and actuator modules,remains a challenge.In this paper,a robust takeover control scheme with high allocation accuracy,independent of precise inertia,is proposed for the reconfigurable combination in the presence of the inertia uncertainty,model parameters uncertainty,communication delay,and external disturbance.By reregulating the conditions for performance synthesis into a symmetric form with similar structure,a hybrid non-fragile H_(2)/H_(∞)controller is designed for handling two types of controller gain perturbations,achieving superior performance with less energy consumption through simultaneous perturbation suppression.Moreover,through temporarily storing the allocation signals in the initial stage to cover the upper bound of the communication delay,the proposed distributed dynamic allocation scheme enables the actuator modules to implement the control signals jointly to stabilize the combination.Distinguished from general allocators,the proposed high-precision allocation scheme under communication delay can not only ensure full exploitation of controller performance,but also dynamically adjust allocation coefficients based on energy consumption index of controller modules to prevent actuator saturation.Numerical simulations demonstrate the superiority of the proposed hybrid non-fragile controller and the allocation scheme.
文摘This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.62306342,62176076)the Excellent Young Scientists Fund in Hunan Province(2024JJ4070)+3 种基金supported by the Natural Science Foundation of Guangdong(2023A1515012922)Shenzhen Foundational Research Funding(JCYJ20220818102415032)The Major Key Project of PCL(PCL2023A09)Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005k).
文摘Consistency identification in task-oriented dialogue(CI-ToD)can prevent inconsistent dialogue response generation,which has recently emerged as an important and growing research area.This paper takes the first step to explore a pre-training paradigm for CI-ToD.Nevertheless,pre-training for CI-ToD is non-trivial because it requires a large amount of multi-turn KB-grounded dialogues,which are extremely hard to collect.To alleviate the data scarcity problem for pre-training,we introduce a modularized pre-training framework(MPFToD),which is capable of utilizing large amounts of KB-free dialogues.Specifically,such modularization allows us to decouple CI-ToD into three sub-modules and propose three pre-training tasks including(i)query response matching pre-training;(ii)dialogue history consistent identification pre-training;and(iii)KB mask language modeling to enhance different abilities of CI-ToD model.As different sub-tasks are solved separately,MPFToD can learn from large amounts of KB-free dialogues for different modules,which are much easier to obtain.Results on the CI-ToD benchmark show that MPFToD pushes the state-of-the-art performance from 56.3%to 61.0%.Furthermore,we show its transferability with promising performance on other downstream tasks(i.e.,dialog act recognition,sentiment classification and table fact checking).
文摘Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.
基金supported by the Dong-A University of the Republic of Korea research fund。
文摘With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY22E050011)National Natural Science Foundation of China(T2121004,51805475)。
文摘In clinical practice,the irregular shapes of traumas pose a significant challenge in rapidly manufacturing personalized scaffolds.To address these challenges,inspired by LEGO■ bricks,this study proposed a novel concept of modular scaffolds and developed an innovative system based on machine vision for their rapid and intelligent assembly tailored to defect shapes.Trapezoidal interfaces effectively connect standardized bone units based on magnesium-doped silicate calcium,ensuring high stability of the modular scaffolds,with compressive strength up to 135 MPa and bending strength up to 17 MPa.Through self-developed defect recognition and reconstruction algorithms,defect recognition and personalized assembly schemes for bone scaffolds can be achieved autonomously.Modular scaffolds seamlessly integrate with surrounding bone tissue,promoting new bone growth,with no apparent differences compared to fully 3D printed integral scaffolds in the skull and femur repair experiments.In summary,the adoption of modular scaffolds not only integrates personalization and standardization but also satisfies the optimal treatment window.
文摘This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.
文摘Given the rapid growth of sustainable construction strategies globally and the importance of resiliency in civil infrastructure,it is crucial to adopt best practices.Modular construction is one such practice and is considered a better alternative to conventional construction in terms of resilience,construction times,resource efficiency,and sustainability.However,the continued expansion of modular construction relies on quantifying and evaluating its sustainability and the purported benefits.This paper develops and checks feasibility through an integrated multi-level decision support framework to empirically evaluate the sustainability performances of single-family residential modular homes.Criteria and indicator development and calculation,benchmark scale establishment,quantitative and qualitative data collection from literature and surveys,and multi-criteria decision analysis are unique aspects of this framework.The results of the two case studies located in the Okanagan region,Canada showed that modular homes perform at a higher level of sustainability than their conventional counterparts across multiple metrics and levels related to environmental and economic factors.The modular homes scored eco-efficiency values of 62.5 and 56.0,respectively and fell into higher performance range.The proposed frame-work offers flexibility in examining different dimensions of sustainability,providing valuable insights into the key parameters that need to be addressed to enhance overall sustainability.This research,which integrates life cycle thinking and decision-making,helps the construction industry and,municipalities,governments,and pol-icymakers in making informed decisions on the selection of suitable construction methods in city developments and move towards a more resilient and sustainable sector.
基金funded by the Russian Science Foundation(No.22–49-02047)。
文摘A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius extension applying ground mobility and overall flight envelope extension using fixed-wing aerodynamics.Also,some lessons learned from NASA Mars Ingenuity flights are considered and addressed with few solutions.The modular system includes a fixed-wing design along with a number of smaller autonomous quadcopter UAVs,encapsulated inside a geodesic spherical support through a gimbal mechanism for ground mobility.Analyzed is the feasibility of allocating to these mini drones both scout and mapping tasks of complex terrain such as crater walls,canyons and cave systems that might hold key insights into the planet's geologic history.Once docked with the mothership fixed wing,the mini drones serve as a distributed propulsion system,for vertical take-off and landing and control,completely replacing control surfaces on the flying wing itself,its engine and landing gear.CFD and structural simulations have demonstrated the flight-ability in Mars conditions of a flying wing design along with scout drone prototypes with a pentagon-hexagon geodesic shell.Also demonstrated is the great flexibility of the suggested modular approach for various research applications and mission profiles on Mars and other planets or moons,improving overall reliability and mission radius.
基金supported by Technology Research and Development Program of China Construction Advanced Technology Research Institute(Grant No.XJY-2024-16)。
文摘The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To solve this problem,the small friction pendulum bearing(FPB)isolation design is proposed for modular pressurized buildings.Firstly,a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings.The reasonability of the simplified model is verified by comparing the refined finite element model.Subsequently,according to the FPB design process for modular pressurized buildings,a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes.Lastly,the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis.The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility,respectively.When adopting FPBs,the response of the structure is significantly reduced,and the seismic isolation effect is obvious.The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly.It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas.
基金supported by the National Natural Science Foundation of China(Grant No.62322601).
文摘1Introduction Embodied Artificial Intelligence(Embodied AI)has recently become a key research focus[1].It emphasizes agents'abilities to perceive,comprehend,and act in physical worlds to complete tasks.Simulation platforms are essential in this area,as they simulate agent behaviors in set environments and tasks,thereby accelerating algorithm validation and optimization.However,constructing such a platform presents several challenges.
基金supported by the National Natural Science Foundation of China(Grant No.61272279)the TianYuan Special Funds of the National Natural Science Foundation of China(Grant No.11326239)+1 种基金the Higher School Science and Technology Research Project of Inner Mongolia,China(Grant No.NJZY13119)the Inner Mongolia University of Technology,China(Grant No.ZD201221)
文摘Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.
基金supported by the National Defense Science and Technology Innovation Zone of China(No.00205501).
文摘The shape of a spacecraft is transitioning from monolithic,manual,and static to modular,autonomous,and dynamic.Modular Reconfigurable Spacecrafts(MRSs)offer better solutions than traditional monolithic spacecrafts in several aspects,and may become the next generation of spacecraft systems with efficient design,fast deployment,flexible application,and convenient management.This paper reviews the development and technology of MRS from three aspects:Modularity,reconfigurability,and autonomy.Despite the progress of research on MRS,there is still a lack of unified standards and little understanding of related concepts.Based on the understanding of basic concepts,the studies conducted on MRS are reviewed to identify technical requirements and solutions.Aiming at the future development trend of MRS,a novel modular selfreconfigurable spacecraft,referred to as MagicSat,is proposed.Furthermore,the MagicSat system composition,advantages,and application prospects are studied.The enabling technologies and major challenges of MRS are further analyzed in terms of modularization,integrated management,and self-reconfiguration technologies.Finally,the future development trend of MRS technology is predicted,and corresponding suggestions are provided.
基金Project supported by the National Natural Science Foundation of China(Grants No.61202262)the Natural Science Foundation of Jiangsu Province,China(Grants No.BK2012328)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grants No.20120092120034)
文摘Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.
基金Supported by the Natural Science Foundation of Hubei Province (ABAO48)
文摘A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and matrix modularity analysis, a novel prediction method is proposed through investigating the correlating influence of three key measurements: relationship strength, pillars, and change frequency of a forum topic. The method demonstrates that there exist some macroscopic and potential laws for forum situation prediction. Extensive experiments over large many datasets show the efficiency and effectiveness of the algorithms.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2004AA420110)Heilongjiang Province Technology Foundation (No. GB04A502)
文摘A novel mobile self-reconfigurable robot is presented. This robot consists of several independent units. Each unit is composed of modular components including ultrasonic sensor, camera, communication, computation, and mobility parts, and is capable of simple self-reconfiguring to enhance its mobility by expanding itself. Several units can not only link into a train or other shapes autonomously via camera and sensors to be a united whole robot for obstacle clearing, but also disjoin to be separate units under control after missions. To achieve small overall size, compact mechanical structures are adopted in modular components design, and a miniature advanced RISC machines (ARM) based embedded controller is developed for minimal power consumption and efficient global control. The docking experiment between two units has also been implemented.