Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion...Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.展开更多
With the rapid development and widespread adoption of Internet of Things(IoT)technology,the innovative concept of the Internet of Vehicles(IoV)has emerged,ushering in a new era of intelligent transportation.Since vehi...With the rapid development and widespread adoption of Internet of Things(IoT)technology,the innovative concept of the Internet of Vehicles(IoV)has emerged,ushering in a new era of intelligent transportation.Since vehicles are mobile entities,they move across different domains and need to communicate with the Roadside Unit(RSU)in various regions.However,open environments are highly susceptible to becoming targets for attackers,posing significant risks of malicious attacks.Therefore,it is crucial to design a secure authentication protocol to ensure the security of communication between vehicles and RSUs,particularly in scenarios where vehicles cross domains.In this paper,we propose a provably secure cross-domain authentication and key agreement protocol for IoV.Our protocol comprises two authentication phases:intra-domain authentication and cross-domain authentication.To ensure the security of our protocol,we conducted rigorous analyses based on the ROR(Real-or-Random)model and Scyther.Finally,we show in-depth comparisons of our protocol with existing ones from both security and performance perspectives,fully demonstrating its security and efficiency.展开更多
To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solu...To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solution,current techniques still suffer from issues related to efficiency,security,and privacy.Our research aims to address these challenges by proposing a lightweight,trusted data interaction scheme based on blockchain,which reduces redundant interactions among entities.We enhance the traditional Practical Byzantine Fault Tolerance(PBFT)algorithm to support lightweight distributed consensus in large-scale IIoT scenarios.Introducing a composite digital signature algorithm and incorporating veto power minimizes resource consumption and eliminates ineffective consensus operations.The experimental results show that,compared with PBFT,our scheme reduces latency by 27.2%,thereby improving communication efficiency and resource utilization.Furthermore,we develop a lightweight authentication technique specifically for cross-domain IIoT,leveraging blockchain technology to achieve distributed collaborative authentication.The performance comparisons indicate that our method significantly outperforms traditional schemes,with an average authentication latency of approximately 151 milliseconds.Additionally,we introduce a trusted federated learning(FL)algorithm that ensures comprehensive trust assessments for devices across different domains while protecting data privacy.Extensive simulations and experiments validate the reliability of our approach.展开更多
Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunatel...Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunately,this crucial process often occurs through unsecured wireless connections,exposing it to numerous cyber-physical attacks.Furthermore,UAVs’limited onboard computing resources make it challenging to perform complex cryptographic operations.The main aim of constructing a cryptographic scheme is to provide substantial security while reducing the computation and communication costs.This article introduces an efficient and secure cross-domain Authenticated Key Agreement(AKA)scheme that uses Hyperelliptic Curve Cryptography(HECC).The HECC,a modified version of ECC with a smaller key size of 80 bits,is well-suited for use in UAVs.In addition,the proposed scheme is employed in a cross-domain environment that integrates a Public Key Infrastructure(PKI)at the receiving end and a Certificateless Cryptosystem(CLC)at the sending end.Integrating CLC with PKI improves network security by restricting the exposure of encryption keys only to the message’s sender and subsequent receiver.A security study employing ROM and ROR models,together with a comparative performance analysis,shows that the proposed scheme outperforms comparable existing schemes in terms of both efficiency and security.展开更多
Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current so...Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current solutions face numerous challenges in continuously ensuring trustworthy routing,fulfilling diverse requirements,achieving reasonable resource allocation,and safeguarding against malicious behaviors of network operators.We propose CrowdRouting,a novel cross-domain routing scheme based on crowdsourcing,dedicated to establishing sustained trust in cross-domain routing,comprehensively considering and fulfilling various customized routing requirements,while ensuring reasonable resource allocation and effectively curbing malicious behavior of network operators.Concretely,CrowdRouting employs blockchain technology to verify the trustworthiness of border routers in different network domains,thereby establishing sustainable and trustworthy crossdomain routing based on sustained trust in these routers.In addition,CrowdRouting ingeniously integrates a crowdsourcing mechanism into the auction for routing,achieving fair and impartial allocation of routing rights by flexibly embedding various customized routing requirements into each auction phase.Moreover,CrowdRouting leverages incentive mechanisms and routing settlement to encourage network domains to actively participate in cross-domain routing,thereby promoting optimal resource allocation and efficient utilization.Furthermore,CrowdRouting introduces a supervisory agency(e.g.,undercover agent)to effectively suppress the malicious behavior of network operators through the game and interaction between the agent and the network operators.Through comprehensive experimental evaluations and comparisons with existing works,we demonstrate that CrowdRouting excels in providing trustworthy and fine-grained customized routing services,stimulating active participation in cross-domain routing,inhibiting malicious operator behavior,and maintaining reasonable resource allocation,all of which outperform baseline schemes.展开更多
Although significant progress has been made in micro-expression recognition,effectively modeling the intricate spatial-temporal dynamics remains a persistent challenge owing to their brief duration and complex facial ...Although significant progress has been made in micro-expression recognition,effectively modeling the intricate spatial-temporal dynamics remains a persistent challenge owing to their brief duration and complex facial dynamics.Furthermore,existing methods often suffer from limited gen-eralization,as they primarily focus on single-dataset tasks with small sample sizes.To address these two issues,this paper proposes the cross-domain spatial-temporal graph convolutional network(GCN)(CDST-GCN)model,which comprises two primary components:a siamese attention spa-tial-temporal branch(SASTB)and a global-aware dynamic spatial-temporal branch(GDSTB).Specifically,SASTB utilizes a contrastive learning strategy to project macro-and micro-expressions into a shared,aligned feature space,actively addressing cross-domain discrepancies.Additionally,it integrates an attention-gated mechanism that generates adaptive adjacency matrices to flexibly model collaborative patterns among facial landmarks.While largely preserving the structural paradigm of SASTB,GDSTB enhances the feature representation by integrating global context extracted from a pretrained model.Through this dual-branch architecture,CDST-GCN success-fully models both the global and local spatial-temporal features.The experimental results on CASME II and SAMM datasets demonstrate that the proposed model achieves competitive perfor-mance.Especially in more challenging 5-class tasks,the accuracy of the model on CASME II dataset is as high as 80.5%.展开更多
The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in...The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.展开更多
The lack of facial features caused by wearing masks degrades the performance of facial recognition systems.Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer a...The lack of facial features caused by wearing masks degrades the performance of facial recognition systems.Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer and the device layer.Besides,previous research fails to consider the facial characteristics including occluded and unoccluded parts.To solve the above problems,we put forward a device-edge collaborative occluded face recognition method based on cross-domain feature fusion.Specifically,the device-edge collaborative face recognition architecture gets the utmost out of maximizes device and edge resources for real-time occluded face recognition.Then,a cross-domain facial feature fusion method is presented which combines both the explicit domain and the implicit domain facial.Furthermore,a delay-optimized edge recognition task scheduling method is developed that comprehensively considers the task load,computational power,bandwidth,and delay tolerance constraints of the edge.This method can dynamically schedule face recognition tasks and minimize recognition delay while ensuring recognition accuracy.The experimental results show that the proposed method achieves an average gain of about 21%in recognition latency,while the accuracy of the face recognition task is basically the same compared to the baseline method.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
Due to the rapid advancements in network technology,blockchain is being employed for distributed data storage.In the Internet of Things(IoT)scenario,different participants manage multiple blockchains located in differ...Due to the rapid advancements in network technology,blockchain is being employed for distributed data storage.In the Internet of Things(IoT)scenario,different participants manage multiple blockchains located in different trust domains,which has resulted in the extensive development of cross-domain authentication techniques.However,the emergence of many attackers equipped with quantum computers has the potential to launch quantum computing attacks against cross-domain authentication schemes based on traditional cryptography,posing a significant security threat.In response to the aforementioned challenges,our paper demonstrates a post-quantum cross-domain identity authentication scheme to negotiate the session key used in the cross-chain asset exchange process.Firstly,our paper designs the hiding and recovery process of user identity index based on lattice cryptography and introduces the identity-based signature from lattice to construct a post-quantum cross-domain authentication scheme.Secondly,our paper utilizes the hashed time-locked contract to achieves the cross-chain asset exchange of blockchain nodes in different trust domains.Furthermore,the security analysis reduces the security of the identity index and signature to Learning With Errors(LWE)and Short Integer Solution(SIS)assumption,respectively,indicating that our scheme has post-quantum security.Last but not least,through comparison analysis,we display that our scheme is efficient compared with the cross-domain authentication scheme based on traditional cryptography.展开更多
The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and varia...The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and variable nature of its network topology,vehicles frequently engage in cross-domain interactions.During such processes,directly uploading sensitive information to roadside units for interaction may expose it to malicious tampering or interception by attackers,thus compromising the security of the cross-domain authentication process.Additionally,IoV imposes high real-time requirements,and existing cross-domain authentication schemes for IoV often encounter efficiency issues.To mitigate these challenges,we propose CAIoV,a blockchain-based efficient cross-domain authentication scheme for IoV.This scheme comprehensively integrates technologies such as zero-knowledge proofs,smart contracts,and Merkle hash tree structures.It divides the cross-domain process into anonymous cross-domain authentication and safe cross-domain authentication phases to ensure efficiency while maintaining a balance between efficiency and security.Finally,we evaluate the performance of CAIoV.Experimental results demonstrate that our proposed scheme reduces computational overhead by approximately 20%,communication overhead by around 10%,and storage overhead by nearly 30%.展开更多
The Industrial Internet of Things(IIoT)consists of massive devices in different management domains,and the lack of trust among cross-domain entities leads to risks of data security and privacy leakage during informati...The Industrial Internet of Things(IIoT)consists of massive devices in different management domains,and the lack of trust among cross-domain entities leads to risks of data security and privacy leakage during information exchange.To address the above challenges,a viable solution that combines Certificateless Public Key Cryptography(CL-PKC)with blockchain technology can be utilized.However,as many existing schemes rely on a single Key Generation Center(KGC),they are prone to problems such as single points of failure and high computational overhead.In this case,this paper proposes a novel blockchain-based certificateless cross-domain authentication scheme,that integrates the threshold secret sharing mechanism without a trusted center,meanwhile,adopts blockchain technology to enable cross-domain entities to authenticate with each other and to negotiate session keys securely.This scheme also supports the dynamic joining and removing of multiple KGCs,ensuring secure and efficient cross-domain authentication and key negotiation.Comparative analysiswith other protocols demonstrates that the proposed cross-domain authentication protocol can achieve high security with relatively lowcomputational overhead.Moreover,this paper evaluates the scheme based on Hyperledger Fabric blockchain environment and simulates the performance of the certificateless scheme under different threshold parameters,and the simulation results show that the scheme has high performance.展开更多
This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achi...This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction.More specifically,the proposed method involves an intra-domain fusion unit based on self-attention and an interdomain fusion unit based on cross-attention,which mine and integrate long dependencies within the same domain and across domains.Through long-range dependency modeling,the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective.In particular,we introduce the shifted windows mechanism into the self-attention and cross-attention,which allows our model to receive images with arbitrary sizes.On the other hand,the multi-scene image fusion problems are generalized to a unified framework with structure maintenance,detail preservation,and proper intensity control.Moreover,an elaborate loss function,consisting of SSIM loss,texture loss,and intensity loss,drives the network to preserve abundant texture details and structural information,as well as presenting optimal apparent intensity.Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-theart unified image fusion algorithms and task-specific alternatives.Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.展开更多
In the cloud computing, different cloud service providers are often in different trust domains. As the traditional identity authentication mode cannot be applied to the cloud computing, the cross-domain identity authe...In the cloud computing, different cloud service providers are often in different trust domains. As the traditional identity authentication mode cannot be applied to the cloud computing, the cross-domain identity authentication mechanism is needed to solve the identity authentication problem in the cloud computing. In view of the security problems in cloud computing, a cross-domain identity authentication scheme based on group signature is proposed. This scheme introduces a group of cloud service providers and users who are located in different trust domains. Any member of the group can generate the signature on behalf of the whole group, making the user access the cloud service provider in the case of privacy security. At the same time, with traceability it can track illegal operation of illegal users. In addition, the scheme uses the Chinese Remainder Theorem to integrate the message, and it can control the length of the data in the calculation process, simplifying the calculation process. It also realizes the join and revocation of group members without changing the key of other legitimate group members, and the maintenance cost of authentication schemes is low. The results show that the scheme has the advantages of anonymity, anti-counterfeit, traceability, anti-joint attack and so on. It can not only realize tracking function under the condition of guaranteeing user's privacy, but can also simplify the authentication calculation process to improve the efficiency of the cross domain identity authentication, and its performance is more suitable for large-scale cloud computing environment.展开更多
A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOV...A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.展开更多
Cross-Domain Recommendation(CDR)aims to solve data sparsity and cold-start problems by utilizing a relatively information-rich source domain to improve the recommendation performance of the data-sparse target domain.H...Cross-Domain Recommendation(CDR)aims to solve data sparsity and cold-start problems by utilizing a relatively information-rich source domain to improve the recommendation performance of the data-sparse target domain.However,most existing approaches rely on the assumption of centralized storage of user data,which undoubtedly poses a significant risk of user privacy leakage because user data are highly privacy-sensitive.To this end,we propose a privacy-preserving Federated framework for Cross-Domain Recommendation,called FedCDR.In our method,to avoid leakage of user privacy,a general recommendation model is trained on each user's personal device to obtain embeddings of users and items,and each client uploads weights to the central server.The central server then aggregates the weights and distributes them to each client for updating.Furthermore,because the weights implicitly contain private information about the user,local differential privacy is adopted for the gradients before uploading them to the server for better protection of user privacy.To distill the relationship of user embedding between two domains,an embedding transformation mechanism is used on the server side to learn the cross-domain embedding transformation model.Extensive experiments on real-world datasets demonstrate that ourmethod achieves performance comparable with that of existing data-centralized methods and effectively protects user privacy.展开更多
System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation ai...System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation air operations,users accessing different authentication domains in the SWIM system have problems with the validity,security,and privacy of SWIM-shared data.In order to solve these problems,this paper proposes a SWIM crossdomain authentication scheme based on a consistent hashing algorithm on consortium blockchain and designs a blockchain certificate format for SWIM cross-domain authentication.The scheme uses a consistent hash algorithm with virtual nodes in combination with a cluster of authentication centers in the SWIM consortium blockchain architecture to synchronize the user’s authentication mapping relationships between authentication domains.The virtual authentication nodes are mapped separately using different services provided by SWIM to guarantee the partitioning of the consistent hash ring on the consortium blockchain.According to the dynamic change of user’s authentication requests,the nodes of virtual service authentication can be added and deleted to realize the dynamic load balancing of cross-domain authentication of different services.Security analysis shows that this protocol can resist network attacks such as man-in-the-middle attacks,replay attacks,and Sybil attacks.Experiments show that this scheme can reduce the redundant authentication operations of identity information and solve the problems of traditional cross-domain authentication with single-point collapse,difficulty in expansion,and uneven load.At the same time,it has better security of information storage and can realize the cross-domain authentication requirements of SWIM users with low communication costs and system overhead.KEYWORDS System-wide information management(SWIM);consortium blockchain;consistent hash;cross-domain authentication;load balancing.展开更多
With the application and development of blockchain technology,many problems faced by blockchain traceability are gradually exposed.Such as cross-chain information collaboration,data separation and storage,multisystem,...With the application and development of blockchain technology,many problems faced by blockchain traceability are gradually exposed.Such as cross-chain information collaboration,data separation and storage,multisystem,multi-security domain collaboration,etc.To solve these problems,it is proposed to construct trust domains based on federated chains.The public chain is used as the authorization chain to build a cross-domain data traceability mechanism applicable to multi-domain collaboration.First,the architecture of the blockchain cross-domain model is designed.Combined with the data access strategy and the decision mechanism,the open and transparent judgment of cross-domain permission and cross-domain identity authentication is realized.And the public chain consensus node election mechanism is realized based on PageRank.Then,according to the characteristics of a nonsingle chain structure in the process of data flow,a data retrievalmechanism based on a Bloom filter is designed,and the cross-domain traceability algorithm is given.Finally,the safety and effectiveness of the traceability mechanism are verified by security evaluation and performance analysis.展开更多
Smart parks serve as integral components of smart cities,where they play a pivotal role in the process of urban modernization.The demand for cross-domain cooperation among smart devices from various parks has witnesse...Smart parks serve as integral components of smart cities,where they play a pivotal role in the process of urban modernization.The demand for cross-domain cooperation among smart devices from various parks has witnessed a significant increase.To ensure secure communication,device identities must undergo authentication.The existing cross-domain authentication schemes face issues such as complex authentication paths and high certificate management costs for devices,making it impractical for resource-constrained devices.This paper proposes a blockchain-based lightweight and efficient cross-domain authentication protocol for smart parks,which simplifies the authentication interaction and requires every device to maintain only one certificate.To enhance cross-domain cooperation flexibility,a comprehensive certificate revocation mechanism is presented,significantly reducing certificate management costs while ensuring efficient and secure identity authentication.When a park needs to revoke access permissions of several cooperative partners,the revocation of numerous cross-domain certificates can be accomplished with a single blockchain write operation.The security analysis and experimental results demonstrate the security and effectiveness of our scheme.展开更多
When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain ser...When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.展开更多
基金supported by the ScientificResearch and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A006)Sichuan Key Provincial Research Base of Intelligent Tourism(ZHYJ22-03)In addition,it is also listed as a project of Sichuan Provincial Science and Technology Programme(2022YFG0028).
文摘Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
基金supported by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology and Natural Science Foundation of Shandong Province,China(Grant no.ZR202111230202).
文摘With the rapid development and widespread adoption of Internet of Things(IoT)technology,the innovative concept of the Internet of Vehicles(IoV)has emerged,ushering in a new era of intelligent transportation.Since vehicles are mobile entities,they move across different domains and need to communicate with the Roadside Unit(RSU)in various regions.However,open environments are highly susceptible to becoming targets for attackers,posing significant risks of malicious attacks.Therefore,it is crucial to design a secure authentication protocol to ensure the security of communication between vehicles and RSUs,particularly in scenarios where vehicles cross domains.In this paper,we propose a provably secure cross-domain authentication and key agreement protocol for IoV.Our protocol comprises two authentication phases:intra-domain authentication and cross-domain authentication.To ensure the security of our protocol,we conducted rigorous analyses based on the ROR(Real-or-Random)model and Scyther.Finally,we show in-depth comparisons of our protocol with existing ones from both security and performance perspectives,fully demonstrating its security and efficiency.
基金supported in part by the International Science and Technology Cooperation Program of Liaoning Province(Grant No.2022JH2/10700012)the Applied Basic Research Program of Liaoning Province(Grant No.2023JH2/101300188,2022JH2/101300269)+2 种基金the Foundation of Yunnan Key Laboratory of Service Computing(Grant No.YNSC23118)the Basic Research Project of Liaoning Educational Department(Grant No.JYTMS20230011)supported by the Fundamental Research Funds for the Provincial Universities of Liaoning(No.LJ212410150030).
文摘To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solution,current techniques still suffer from issues related to efficiency,security,and privacy.Our research aims to address these challenges by proposing a lightweight,trusted data interaction scheme based on blockchain,which reduces redundant interactions among entities.We enhance the traditional Practical Byzantine Fault Tolerance(PBFT)algorithm to support lightweight distributed consensus in large-scale IIoT scenarios.Introducing a composite digital signature algorithm and incorporating veto power minimizes resource consumption and eliminates ineffective consensus operations.The experimental results show that,compared with PBFT,our scheme reduces latency by 27.2%,thereby improving communication efficiency and resource utilization.Furthermore,we develop a lightweight authentication technique specifically for cross-domain IIoT,leveraging blockchain technology to achieve distributed collaborative authentication.The performance comparisons indicate that our method significantly outperforms traditional schemes,with an average authentication latency of approximately 151 milliseconds.Additionally,we introduce a trusted federated learning(FL)algorithm that ensures comprehensive trust assessments for devices across different domains while protecting data privacy.Extensive simulations and experiments validate the reliability of our approach.
文摘Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunately,this crucial process often occurs through unsecured wireless connections,exposing it to numerous cyber-physical attacks.Furthermore,UAVs’limited onboard computing resources make it challenging to perform complex cryptographic operations.The main aim of constructing a cryptographic scheme is to provide substantial security while reducing the computation and communication costs.This article introduces an efficient and secure cross-domain Authenticated Key Agreement(AKA)scheme that uses Hyperelliptic Curve Cryptography(HECC).The HECC,a modified version of ECC with a smaller key size of 80 bits,is well-suited for use in UAVs.In addition,the proposed scheme is employed in a cross-domain environment that integrates a Public Key Infrastructure(PKI)at the receiving end and a Certificateless Cryptosystem(CLC)at the sending end.Integrating CLC with PKI improves network security by restricting the exposure of encryption keys only to the message’s sender and subsequent receiver.A security study employing ROM and ROR models,together with a comparative performance analysis,shows that the proposed scheme outperforms comparable existing schemes in terms of both efficiency and security.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20300 and 62072351in part by the Key Research Project of Shaanxi Natural Science Foundation under Grant 2023-JC-ZD-35+1 种基金in part by the Concept Verification Funding of Hangzhou Institute of Technology of Xidian University under Grant GNYZ2024XX007in part by the 111 Project under Grant B16037.
文摘Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current solutions face numerous challenges in continuously ensuring trustworthy routing,fulfilling diverse requirements,achieving reasonable resource allocation,and safeguarding against malicious behaviors of network operators.We propose CrowdRouting,a novel cross-domain routing scheme based on crowdsourcing,dedicated to establishing sustained trust in cross-domain routing,comprehensively considering and fulfilling various customized routing requirements,while ensuring reasonable resource allocation and effectively curbing malicious behavior of network operators.Concretely,CrowdRouting employs blockchain technology to verify the trustworthiness of border routers in different network domains,thereby establishing sustainable and trustworthy crossdomain routing based on sustained trust in these routers.In addition,CrowdRouting ingeniously integrates a crowdsourcing mechanism into the auction for routing,achieving fair and impartial allocation of routing rights by flexibly embedding various customized routing requirements into each auction phase.Moreover,CrowdRouting leverages incentive mechanisms and routing settlement to encourage network domains to actively participate in cross-domain routing,thereby promoting optimal resource allocation and efficient utilization.Furthermore,CrowdRouting introduces a supervisory agency(e.g.,undercover agent)to effectively suppress the malicious behavior of network operators through the game and interaction between the agent and the network operators.Through comprehensive experimental evaluations and comparisons with existing works,we demonstrate that CrowdRouting excels in providing trustworthy and fine-grained customized routing services,stimulating active participation in cross-domain routing,inhibiting malicious operator behavior,and maintaining reasonable resource allocation,all of which outperform baseline schemes.
基金funded in part by the National Natural Science Foundation of China(Nos.62322111,62271289,62501186)the Natural Science Fund for Outstanding Young Scholars of Shandong Province(No.ZR2022YQ60)+4 种基金the Research Fund for the Taishan Scholar Project of Shandong Province(No.tsqn202306064)the Natural Science Fund for Distinguished Young Scientists of ShandongProvince(No.ZR2024JQ007)Shenzhen Science and Technology Program(No.JCYJ20240813101228036)Jinan“20 Terms of New Universities”Funding Project(No.202333035)the Fundamental Research funds for theCentral Universities(No.3072025CFJ0805).
文摘Although significant progress has been made in micro-expression recognition,effectively modeling the intricate spatial-temporal dynamics remains a persistent challenge owing to their brief duration and complex facial dynamics.Furthermore,existing methods often suffer from limited gen-eralization,as they primarily focus on single-dataset tasks with small sample sizes.To address these two issues,this paper proposes the cross-domain spatial-temporal graph convolutional network(GCN)(CDST-GCN)model,which comprises two primary components:a siamese attention spa-tial-temporal branch(SASTB)and a global-aware dynamic spatial-temporal branch(GDSTB).Specifically,SASTB utilizes a contrastive learning strategy to project macro-and micro-expressions into a shared,aligned feature space,actively addressing cross-domain discrepancies.Additionally,it integrates an attention-gated mechanism that generates adaptive adjacency matrices to flexibly model collaborative patterns among facial landmarks.While largely preserving the structural paradigm of SASTB,GDSTB enhances the feature representation by integrating global context extracted from a pretrained model.Through this dual-branch architecture,CDST-GCN success-fully models both the global and local spatial-temporal features.The experimental results on CASME II and SAMM datasets demonstrate that the proposed model achieves competitive perfor-mance.Especially in more challenging 5-class tasks,the accuracy of the model on CASME II dataset is as high as 80.5%.
基金supported in part by National Key R&D Program of China(Grant No.2022YFC3803700)in part by the National Natural Science Foundation of China(Grant No.92067102)in part by the project of Beijing Laboratory of Advanced Information Networks.
文摘The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.
基金supported by National Natural Science Foundation of China(61901071,61871062,61771082,U20A20157)Science and Natural Science Foundation of Chongqing,China(cstc2020jcyjzdxmX0024)+6 种基金University Innovation Research Group of Chongqing(CXQT20017)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(CXTDX201601020)Natural Science Foundation of Chongqing,China(CSTB2022NSCQ-MSX0600)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)Chongqing Municipal Technology Innovation and Application Development Special Key Project(cstc2020jscxdxwtBX0053)China Postdoctoral Science Foundation Project,China(2022MD723723)Chongqing Postdoctoral Research Project Special Funding,China(2023CQBSHTB3092)。
文摘The lack of facial features caused by wearing masks degrades the performance of facial recognition systems.Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer and the device layer.Besides,previous research fails to consider the facial characteristics including occluded and unoccluded parts.To solve the above problems,we put forward a device-edge collaborative occluded face recognition method based on cross-domain feature fusion.Specifically,the device-edge collaborative face recognition architecture gets the utmost out of maximizes device and edge resources for real-time occluded face recognition.Then,a cross-domain facial feature fusion method is presented which combines both the explicit domain and the implicit domain facial.Furthermore,a delay-optimized edge recognition task scheduling method is developed that comprehensively considers the task load,computational power,bandwidth,and delay tolerance constraints of the edge.This method can dynamically schedule face recognition tasks and minimize recognition delay while ensuring recognition accuracy.The experimental results show that the proposed method achieves an average gain of about 21%in recognition latency,while the accuracy of the face recognition task is basically the same compared to the baseline method.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.
基金This work was supported by the Defense Industrial Technology Development Program(Grant No.JCKY2021208B036).
文摘Due to the rapid advancements in network technology,blockchain is being employed for distributed data storage.In the Internet of Things(IoT)scenario,different participants manage multiple blockchains located in different trust domains,which has resulted in the extensive development of cross-domain authentication techniques.However,the emergence of many attackers equipped with quantum computers has the potential to launch quantum computing attacks against cross-domain authentication schemes based on traditional cryptography,posing a significant security threat.In response to the aforementioned challenges,our paper demonstrates a post-quantum cross-domain identity authentication scheme to negotiate the session key used in the cross-chain asset exchange process.Firstly,our paper designs the hiding and recovery process of user identity index based on lattice cryptography and introduces the identity-based signature from lattice to construct a post-quantum cross-domain authentication scheme.Secondly,our paper utilizes the hashed time-locked contract to achieves the cross-chain asset exchange of blockchain nodes in different trust domains.Furthermore,the security analysis reduces the security of the identity index and signature to Learning With Errors(LWE)and Short Integer Solution(SIS)assumption,respectively,indicating that our scheme has post-quantum security.Last but not least,through comparison analysis,we display that our scheme is efficient compared with the cross-domain authentication scheme based on traditional cryptography.
基金supported by the National Natural Science Foundation of China(62362013)the Guangxi Natural Science Foundation(2023GXNSFAA026294).
文摘The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and variable nature of its network topology,vehicles frequently engage in cross-domain interactions.During such processes,directly uploading sensitive information to roadside units for interaction may expose it to malicious tampering or interception by attackers,thus compromising the security of the cross-domain authentication process.Additionally,IoV imposes high real-time requirements,and existing cross-domain authentication schemes for IoV often encounter efficiency issues.To mitigate these challenges,we propose CAIoV,a blockchain-based efficient cross-domain authentication scheme for IoV.This scheme comprehensively integrates technologies such as zero-knowledge proofs,smart contracts,and Merkle hash tree structures.It divides the cross-domain process into anonymous cross-domain authentication and safe cross-domain authentication phases to ensure efficiency while maintaining a balance between efficiency and security.Finally,we evaluate the performance of CAIoV.Experimental results demonstrate that our proposed scheme reduces computational overhead by approximately 20%,communication overhead by around 10%,and storage overhead by nearly 30%.
基金supported in part by the Fundamental Research Funds for the Central Universities(Nos.3282024052,3282024058)the“Advanced and Sophisticated”Discipline Construction Project of Universities in Beijing(No.20210013Z0401).
文摘The Industrial Internet of Things(IIoT)consists of massive devices in different management domains,and the lack of trust among cross-domain entities leads to risks of data security and privacy leakage during information exchange.To address the above challenges,a viable solution that combines Certificateless Public Key Cryptography(CL-PKC)with blockchain technology can be utilized.However,as many existing schemes rely on a single Key Generation Center(KGC),they are prone to problems such as single points of failure and high computational overhead.In this case,this paper proposes a novel blockchain-based certificateless cross-domain authentication scheme,that integrates the threshold secret sharing mechanism without a trusted center,meanwhile,adopts blockchain technology to enable cross-domain entities to authenticate with each other and to negotiate session keys securely.This scheme also supports the dynamic joining and removing of multiple KGCs,ensuring secure and efficient cross-domain authentication and key negotiation.Comparative analysiswith other protocols demonstrates that the proposed cross-domain authentication protocol can achieve high security with relatively lowcomputational overhead.Moreover,this paper evaluates the scheme based on Hyperledger Fabric blockchain environment and simulates the performance of the certificateless scheme under different threshold parameters,and the simulation results show that the scheme has high performance.
基金This work was supported by the National Natural Science Foundation of China(62075169,62003247,62061160370)the Key Research and Development Program of Hubei Province(2020BAB113).
文摘This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction.More specifically,the proposed method involves an intra-domain fusion unit based on self-attention and an interdomain fusion unit based on cross-attention,which mine and integrate long dependencies within the same domain and across domains.Through long-range dependency modeling,the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective.In particular,we introduce the shifted windows mechanism into the self-attention and cross-attention,which allows our model to receive images with arbitrary sizes.On the other hand,the multi-scene image fusion problems are generalized to a unified framework with structure maintenance,detail preservation,and proper intensity control.Moreover,an elaborate loss function,consisting of SSIM loss,texture loss,and intensity loss,drives the network to preserve abundant texture details and structural information,as well as presenting optimal apparent intensity.Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-theart unified image fusion algorithms and task-specific alternatives.Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.
基金Supported by the National Natural Science Foundation of China(U1304614,U1204703)the Construct Program of the Key Discipline in Zhengzhou Normal UniversityAid Program for Science and Technology Innovative Research Team of Zhengzhou Normal University,Henan Province Education Science Plan General Topic((2018)-JKGHYB-0279)
文摘In the cloud computing, different cloud service providers are often in different trust domains. As the traditional identity authentication mode cannot be applied to the cloud computing, the cross-domain identity authentication mechanism is needed to solve the identity authentication problem in the cloud computing. In view of the security problems in cloud computing, a cross-domain identity authentication scheme based on group signature is proposed. This scheme introduces a group of cloud service providers and users who are located in different trust domains. Any member of the group can generate the signature on behalf of the whole group, making the user access the cloud service provider in the case of privacy security. At the same time, with traceability it can track illegal operation of illegal users. In addition, the scheme uses the Chinese Remainder Theorem to integrate the message, and it can control the length of the data in the calculation process, simplifying the calculation process. It also realizes the join and revocation of group members without changing the key of other legitimate group members, and the maintenance cost of authentication schemes is low. The results show that the scheme has the advantages of anonymity, anti-counterfeit, traceability, anti-joint attack and so on. It can not only realize tracking function under the condition of guaranteeing user's privacy, but can also simplify the authentication calculation process to improve the efficiency of the cross domain identity authentication, and its performance is more suitable for large-scale cloud computing environment.
基金supported by the National Natural Science Foundation of China under Grants No.61173100,No.61173101the Fundamental Research Funds for the Central Universities under Grant No.DUT10RW202
文摘A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.
基金supported by the Key Project of Nature Science Research for the Universities of Anhui Province of China(No.KJ2020A0657)the National Science Foundation of China(No.61872002)the Key Research and Development Program of Anhui Province(No.202104a05020058).
文摘Cross-Domain Recommendation(CDR)aims to solve data sparsity and cold-start problems by utilizing a relatively information-rich source domain to improve the recommendation performance of the data-sparse target domain.However,most existing approaches rely on the assumption of centralized storage of user data,which undoubtedly poses a significant risk of user privacy leakage because user data are highly privacy-sensitive.To this end,we propose a privacy-preserving Federated framework for Cross-Domain Recommendation,called FedCDR.In our method,to avoid leakage of user privacy,a general recommendation model is trained on each user's personal device to obtain embeddings of users and items,and each client uploads weights to the central server.The central server then aggregates the weights and distributes them to each client for updating.Furthermore,because the weights implicitly contain private information about the user,local differential privacy is adopted for the gradients before uploading them to the server for better protection of user privacy.To distill the relationship of user embedding between two domains,an embedding transformation mechanism is used on the server side to learn the cross-domain embedding transformation model.Extensive experiments on real-world datasets demonstrate that ourmethod achieves performance comparable with that of existing data-centralized methods and effectively protects user privacy.
基金funded by the National Natural Science Foundation of China(62172418)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U2133203)+1 种基金the Education Commission Scientific Research Project of Tianjin China(2022KJ081)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology(SH2021111907).
文摘System-wide information management(SWIM)is a complex distributed information transfer and sharing system for the next generation of Air Transportation System(ATS).In response to the growing volume of civil aviation air operations,users accessing different authentication domains in the SWIM system have problems with the validity,security,and privacy of SWIM-shared data.In order to solve these problems,this paper proposes a SWIM crossdomain authentication scheme based on a consistent hashing algorithm on consortium blockchain and designs a blockchain certificate format for SWIM cross-domain authentication.The scheme uses a consistent hash algorithm with virtual nodes in combination with a cluster of authentication centers in the SWIM consortium blockchain architecture to synchronize the user’s authentication mapping relationships between authentication domains.The virtual authentication nodes are mapped separately using different services provided by SWIM to guarantee the partitioning of the consistent hash ring on the consortium blockchain.According to the dynamic change of user’s authentication requests,the nodes of virtual service authentication can be added and deleted to realize the dynamic load balancing of cross-domain authentication of different services.Security analysis shows that this protocol can resist network attacks such as man-in-the-middle attacks,replay attacks,and Sybil attacks.Experiments show that this scheme can reduce the redundant authentication operations of identity information and solve the problems of traditional cross-domain authentication with single-point collapse,difficulty in expansion,and uneven load.At the same time,it has better security of information storage and can realize the cross-domain authentication requirements of SWIM users with low communication costs and system overhead.KEYWORDS System-wide information management(SWIM);consortium blockchain;consistent hash;cross-domain authentication;load balancing.
文摘With the application and development of blockchain technology,many problems faced by blockchain traceability are gradually exposed.Such as cross-chain information collaboration,data separation and storage,multisystem,multi-security domain collaboration,etc.To solve these problems,it is proposed to construct trust domains based on federated chains.The public chain is used as the authorization chain to build a cross-domain data traceability mechanism applicable to multi-domain collaboration.First,the architecture of the blockchain cross-domain model is designed.Combined with the data access strategy and the decision mechanism,the open and transparent judgment of cross-domain permission and cross-domain identity authentication is realized.And the public chain consensus node election mechanism is realized based on PageRank.Then,according to the characteristics of a nonsingle chain structure in the process of data flow,a data retrievalmechanism based on a Bloom filter is designed,and the cross-domain traceability algorithm is given.Finally,the safety and effectiveness of the traceability mechanism are verified by security evaluation and performance analysis.
基金supported in part by the National Natural Science Foundation Project of China under Grant No.62062009the Guangxi Innovation-Driven Development Project under Grant Nos.AA17204058-17 and AA18118047-7.
文摘Smart parks serve as integral components of smart cities,where they play a pivotal role in the process of urban modernization.The demand for cross-domain cooperation among smart devices from various parks has witnessed a significant increase.To ensure secure communication,device identities must undergo authentication.The existing cross-domain authentication schemes face issues such as complex authentication paths and high certificate management costs for devices,making it impractical for resource-constrained devices.This paper proposes a blockchain-based lightweight and efficient cross-domain authentication protocol for smart parks,which simplifies the authentication interaction and requires every device to maintain only one certificate.To enhance cross-domain cooperation flexibility,a comprehensive certificate revocation mechanism is presented,significantly reducing certificate management costs while ensuring efficient and secure identity authentication.When a park needs to revoke access permissions of several cooperative partners,the revocation of numerous cross-domain certificates can be accomplished with a single blockchain write operation.The security analysis and experimental results demonstrate the security and effectiveness of our scheme.
基金supported by the National Basic Research Program of China (2012CB315903)the Program for Key Science and Technology Innovation Team of Zhejiang Province(2011R50010,2013TD20)+3 种基金the National High Technology Research Program of China(2015AA016103)the National Natural Science Foundation of China(61379118)the Research Fund of ZTE CorporationJiaxing Science and Technology Project (No.2014AY21021)
文摘When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.