期刊文献+
共找到2,407篇文章
< 1 2 121 >
每页显示 20 50 100
Integrating neglected and underutilized crops(NUCs)in South Asian cropping systems and diets:Challenges and prospects
1
作者 Saira SHAFIQ Muhammad ZIA UL HAQ +6 位作者 Syed Abbas RAZA NAQVI Wardha SARFARAZ Hina ALI Muhammad Majid ISLAM Gul Zaib HASSAN Muhammad NAWAZ Tasawer ABBAS 《Regional Sustainability》 2025年第4期1-11,共11页
The present review critically examines the role of neglected and underutilized crops(NUCs)in enhancing the resilience of South Asian cropping systems and diets in the context of climate change and nutritional challeng... The present review critically examines the role of neglected and underutilized crops(NUCs)in enhancing the resilience of South Asian cropping systems and diets in the context of climate change and nutritional challenges.This analysis reveals that integrating NUCs,such as millets,sorghums,amaranth,and indigenous legumes,into existing cropping systems can significantly improve the climate resilience,dietary diversity,and ecological sustainability of the food systems.These crops exhibit superior tolerance to abiotic stress and offer higher nutritional density compared to staple cereals,such as rice and wheat.However,their adoption faces challenges,including limited research investment,fragmented value chains,etc.We further identify that complementary cropping strategies and climate-smart agriculture(CSA)practices can optimize resource use while boosting smallholder farmers’income.NUCs are pivotal for the transformation of exist cropping systems towards nutrition-sensitive and climate-resilient agricultural and food systems.Strategic integration of NUCs can simultaneously address food insecurity,biodiversity loss,and rural poverty.Yet,unlocking their potential requires coordinated efforts in genetic improvement,market development,and policy frameworks tailored to regional contexts.This synthesis provides a comprehensive roadmap for policy-makers,researchers,and farmers to leverage NUCs as“Future Smart Food”.By bridging agronomic,nutritional,and socioeconomic perspectives,this study highlights the transformative potential of NUCs in achieving Sustainable Development Goals(SDGs)across South Asian countries. 展开更多
关键词 Neglected and underutilized crops(NUCs) Climate-smart agriculture(CSA) Climate change Food security cropping systems Dietary diversity South Asia
在线阅读 下载PDF
Impacts of continuous melon cropping on soil properties and microbial network restructuring
2
作者 HAN Runqiang SHI Yao +5 位作者 WANG Haojie KUANG Zuoyu HAILATI Daren SHEN Zhengran MA Yanyu XUE Nana 《Journal of Arid Land》 2025年第10期1458-1481,共24页
Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of conti... Continuous cropping can lead to soil environment deterioration,cause plant health problems,and reduce crop productivity.However,the response mechanisms of soil microbial co-occurrence patterns to the duration of continuous melon cropping remain poorly understood.Here,we employed the metagenomic techniques to comparatively investigate the bulk and rhizosphere soil microbial communities of major melon-producing regions(where the duration of continuous melon cropping ranges from 1 to 30 a)in the eastern and southern parts of Xinjiang Uygur Autonomous Region,China.The results showed that soil pH clearly decreased with increasing melon cropping duration,while soil electrical conductivity(EC)and the other soil nutrient indices increased with increasing melon cropping duration(with the exception of AN and TK in the southern melon-producing region).The most dominant bacterial phyla were Proteobacteria and Actinobacteria,and the most abundant fungal phyla were Ascomycota and Mucoromycota.Redundancy analysis(RDA)indicated that soil pH and EC had no significant effects on the bacterial communities.However,after many years of continuous melon cropping in the southern melon-producing region,fungal communities were significantly negatively correlated with soil pH and significantly positively correlated with soil EC(P<0.050).Co-occurrence network analysis showed that continuous melon cropping increased the complexity but decreased the connectivity of the cross-domain microbial networks.Moreover,the enrichment patterns of microorganisms in the main microbial network modules varied significantly with the duration of continuous melon cropping.Based on the analysis of keystone taxa,we found that continuous melon cropping increased some plant pathogens(e.g.,Fusarium and Stagonospora)but decreased beneficial bacteria(e.g.,Mesorhizobium and Pseudoxanthomonas).In conclusion,this study has greatly enhanced the understanding of the effects of continuous melon cropping on alterations in the microbial community structure and ecological networks in Xinjiang. 展开更多
关键词 MELON continuous cropping microbial community ecological networks metagenomic sequencing redundancy analysis(RDA) keystone taxa
在线阅读 下载PDF
Transcriptomic Analysis of Polygonatum sibiricum in Response to Continuous Cropping Obstacles
3
作者 Zhufang WU Yong CHEN 《Agricultural Biotechnology》 2025年第2期6-9,12,共5页
[Objectives]This study was conducted to comprehensively understand the changes in gene expression of plants under environmental stress during different growth and development stages.[Methods]The effects of continuous ... [Objectives]This study was conducted to comprehensively understand the changes in gene expression of plants under environmental stress during different growth and development stages.[Methods]The effects of continuous cropping on the roots and leaves of Polygonatum sibiricum were investigated using transcriptome sequencing.Normally-grown first crop P.sibiricum was used as the control group,while continuous cropping plants served as the treatment group.Transcriptomic differences in roots and leaves under different conditions were compared.[Results]The leaf materials of first crop and continuous cropping P.sibiricum(CCLZ vs FCLZ)showed 21916 differentially expressed genes(DEGs),while the root materials of first crop and continuous cropping P.sibiricum(CCRZ vs FCRZ)exhibited 12726 DEGs(the lowest DEG count)(12726).Among them,1896 DEGs were common.GO enrichment analysis revealed that DEGs were mainly enriched in metabolism,cell wall degradation,and pathogen defense.KEGG enrichment analysis indicated that DEGs in CCLZ vs FCLZ and CCRZ vs FCRZ primarily affected hormone signal transduction and pathogen interaction pathways.[Conclusions]This study preliminarily elucidate the regulatory mechanisms in the roots and leaves of continuous cropping P.sibiricum at the molecular level,providing reference for research on its adaptation to continuous cropping. 展开更多
关键词 Polygonatum sibiricum Continuous cropping obstacle TRANSCRIPTOME Differentially expressed gene Functional analysis
在线阅读 下载PDF
Use of soil nematodes as indicators of soil and plant health in continuous cropping systems:A case study in dragon fruit
4
作者 Zhechao Dou Jing Ma +6 位作者 Kunguang Wang Qiaofang Lu Zhiguang Chi Dongming Cui Chang Pan Zhuchi He Yuanmei Zuo 《Journal of Integrative Agriculture》 2025年第5期1987-2001,共15页
Crops produced using the practice of continuous cropping can become seriously damaged by plant-parasitic nematodes,an important indicator of continuous cropping obstacles.As a typical and important perennial economic ... Crops produced using the practice of continuous cropping can become seriously damaged by plant-parasitic nematodes,an important indicator of continuous cropping obstacles.As a typical and important perennial economic crop,dragon fruit is prone to serious plant-parasitic nematode infestation;however,whether it encounters continuous cropping obstacles remains unclear.Here,we studied plant-parasitic nematodes(Meloidogyne spp.and Tylenchorhynchus sp.)in the soil and roots,soil nematode communities,metabolic footprint,soil integrated fertility,and the yield of intensively planted dragon fruit under non-continuous cropping(Y1)and 3 years(Y3)and 5 years(Y5)of continuous cropping,to determine potential continuous-cropping obstacles and factors that affect the yield of this fruit.The largest numbers of plant-parasitic nematodes in the soil and roots were observed in Y5;the associated yield was reduced,and the dragon fruit was severely stressed.Further analysis of the composition,diversity,and ecological function indices of soil nematodes showed that the soil ecological environment deteriorated after 3 years of continuous cropping,with Y5 having the worst results.Similarly,the soil at Y5 had a significant inhibitory effect on the growth and reproduction of Caenorhabditis elegans.Mantel test analysis and a random forest model showed that soil available phosphorus,soil exchange calcium,and soil nematode abundance and diversity were related significantly to yield.Partial least squares path modeling revealed that soil fertility and soil nematode diversity directly impacts the yield of continuously cropped dragon fruit.In summary,continuous cropping obstacles occurred in Y5 of intensive dragon fruit cultivation,with soil nematode diversity and soil fertility determining the crop's yield. 展开更多
关键词 Caenorhabditis elegans continuous cropping obstacle dragon fruit plant-parasitic nematodes soil integrated fertility soil nematode community
在线阅读 下载PDF
Effects of Continuous Cropping of Polygonatum odoratum on Microbial Functional Diversity and Selected Environmental Factors in the Rhizosphere Soil
5
作者 Manjiang YU Yihong HU +3 位作者 Fan XIE Xiongmei ZHU Chenzhong JIN Jing YE 《Agricultural Biotechnology》 2025年第5期12-18,21,共8页
[Objectives]This study was conducted to investigate the mechanism of continuous cropping obstacles in Polygonatum odoratum.[Methods]Three treatments were established:continuous cropping(two consecutive crops),first-cr... [Objectives]This study was conducted to investigate the mechanism of continuous cropping obstacles in Polygonatum odoratum.[Methods]Three treatments were established:continuous cropping(two consecutive crops),first-crop control(with Phaseolus vulgaris as the preceding crop),and blank control.The effects of continuous cropping on the functional diversity of soil microorganisms,soil enzyme activities,and soil nutrient coordination in the rhizosphere soil of P.odoratum during different growth stages were investigated.[Results](1)Continuous cropping increased the carbon source metabolic capacity,Shannon diversity index,and richness of rhizosphere soil microorganisms by 3.2%-14.7%,0.9%-3.5%,and 1.3%-12.5%,respectively,but the differences were not significant.(2)Principal component analysis indicated that during the middle stage of rhizome expansion,continuous cropping significantly altered the characteristics of microbial carbon metabolism,and the microbial communities utilizing carbohydrates,amino acids,polymers,carboxylic acids and amines as carbon sources exhibited vigorous metabolism.(3)Continuous cropping significantly reduced the activities of urease,polyphenol oxidase,and acid phosphatase in rhizosphere soil,with decreases of 24.4%-39.5%,3.2%-14.8%,and 7.9%-18.2%,respectively.The activities of catalase and invertase sometimes exceeded and sometimes fell below those of the first crop,showing no consistent pattern.(4)Under continuous cropping conditions,nutrient imbalance occurred in the rhizosphere soil,characterized by nitrogen deficiency and phosphorus surplus.(5)Grey correlation analysis indicated that available phosphorus content,alkali-hydrolyzable nitrogen content and polyphenol oxidase activity in rhizosphere soil were the main factors influencing microbial functional diversity.[Conclusions]This study provides a theoretical basis for understanding the formation mechanism of continuous cropping obstacles in P.odoratum. 展开更多
关键词 Polygonatum odoratum Continuous cropping Rhizosphere soil Microbial function
在线阅读 下载PDF
Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize-wheat cropping systems 被引量:1
6
作者 Jinfeng Wang Xueyun Yang +3 位作者 Shaomin Huang Lei Wu Zejiang Cai Minggang Xu 《Journal of Integrative Agriculture》 2025年第1期290-305,共16页
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t... Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility. 展开更多
关键词 organic amendments crop yield yield sustainability soil fertility nutrient balance
在线阅读 下载PDF
Occasional Tillage in a Field Established under Conservation Agriculture for Tomato Cropping
7
作者 Roberto Botelho Ferraz Branco Bruno Cesar Ananias +2 位作者 Andréia Cristina Silva Hirata Humberto Sampaio de Araújo Jane Maria de Carvalho Silveira 《Agricultural Sciences》 2025年第1期31-47,共17页
The Conservation Agriculture (CA) is a current concept drives to save natural resources for agricultural production based on the minimum soil disturbance or no-tillage, crop rotation and permanent maintenance of straw... The Conservation Agriculture (CA) is a current concept drives to save natural resources for agricultural production based on the minimum soil disturbance or no-tillage, crop rotation and permanent maintenance of straw on soil surface. The increasing in soil density is a problem to achieve great copping yield under CA, so occasional one-time tillage is considered as an alternative to continuous no-tillage. In this way, this experiment was carried out to compare occasional tillage and no-tillage interacting with cover crops in a field established under conservation agriculture. Thus, the experimental treatments were set up by two tillage methods, conventional tillage and no-tillage and two cover crops, white lupin and millet setting in a randomized blocks with split plot design with four replications. The traits evaluated in the research were soil fertility, soil resistance to penetration, soil moisture and tomato agronomic performance. No-tillage was more efficient to preserve soil moisture;however soil fertility, soil resistance to penetration and tomato yield were favored by conventional tillage. Regarding to cover crops white lupin increased the soil K concentration and enhanced the tomato growth. Although occasional tillage had better performance to the soil fertility and tomato yield, we highlighted that CA is the better way to increase soil health and soil and water conservation along the time leading to so desired regenerative agriculture. 展开更多
关键词 No Tillage Crop Rotation Cover Crops Solanum lycopersicum L.
在线阅读 下载PDF
What kind of cotton ideotype is adapted to agroecological cropping systems and climate change in Benin?
8
作者 ABOUA Dègbédji Charlemagne GÉRARDEAUX Edward +2 位作者 DEBAEKE Philippe BOULAKIA Stéphane SEKLOKA Emmanuel 《Journal of Cotton Research》 2025年第3期319-332,共14页
Background Agroecological cropping systems are recognised as an alternative way to ensure the sustainability of cotton(Gossypium hirsutum L.) production in the context of climate change and degradation of soil fertili... Background Agroecological cropping systems are recognised as an alternative way to ensure the sustainability of cotton(Gossypium hirsutum L.) production in the context of climate change and degradation of soil fertility. A study was conducted in Benin from 2020 to 2023 to compare six different cotton cultivars in three agroecological cropping systems in two cotton-growing zones. Plough-based tillage plus incorporation of cover crop biomass(PTI), conservation agriculture with strip tillage(CA_ST), and conservation agriculture with no tillage(CA_NT) were compared with the reference plough-based tillage(PT). The objective was to identify morpho-physiological traits of cotton that increase yield in agroecological cropping systems. Our approach combined a field experiment and crop simulation model(CSM) of CROPGRO-Cotton to evaluate the effects of genotype(G) × environment(E) × management(M) interactions on seed cotton yield(SCY).Results Cultivars Tamcot_camde and Okp768 and simulated ideotypes performed best in CA systems. Increased seed mass, large and thick leaves, and later maturity were identified as beneficial for yield enhancement in CA systems. Cultivars and ideotypes that combine these traits also resulted in better nitrogen and water use efficiencies in CA systems. Under different climate scenarios up to 2050, ideotypes designed could increase SCY in Benin.Conclusion A set of morpho-physiological traits associated with vegetative vigour is required to ensure a good SCY in agroecological cropping systems. These results provide scientific evidence and useful knowledge for breeders and research programmes on cropping systems focused on the adaptation of cotton to climate change. 展开更多
关键词 TILLAGE Agroecological practices Water status Gossypium hirsutum IDEOTYPE Seed cotton yield Cover crop CSM-CROPGRO-Cotton
在线阅读 下载PDF
The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote postcropping rice production
9
作者 Mengyan Cao Shaoping Ye +5 位作者 Cheng Jin Junkang Cheng Yao Xiang Yu Song Guorong Xin Chuntao He 《Journal of Integrative Agriculture》 2025年第4期1588-1605,共18页
Winter planting green manures in southern China effectively improve soil properties and rice production through microbial community construction.However,the effects of soil communities of arbuscular mycorrhizal fungi(... Winter planting green manures in southern China effectively improve soil properties and rice production through microbial community construction.However,the effects of soil communities of arbuscular mycorrhizal fungi(AMF)from different winter planting green manures on the soil properties and post-cropping rice production remain unclear.In this study,the soil AMF communities of three common winter planting patterns in southern China,winter fallow,winter ryegrass(Lolium multiflorum L.),and winter Chinese milk vetch(Astragalus sinicus L.),were explored and their effects on post-cropping rice production were investigated.Compared with winter fallow,the winter ryegrass and winter Chinese milk vetch patterns could alleviate soil acidification,significantly increase soil AMF spore density,and improve the soil AMF community structure.Based on sterilized soil,rice production indicators such as thousandseed weight,theoretical yield,and the grain amylose and total sugar contents of rice inoculated with AMF spores from winter Chinese milk vetch soil were 6.68–53.57%higher than those without AMF inoculation.Rice panicle weight,seed setting rate,and theoretical yield were 15.38–22.71%higher in the treatment with AMF spores from winter ryegrass soil than in the treatments with no AMF inoculation.In addition,the protein,amylose,and total sugar contents of rice grains were 14.92,104.82,and 802.23 mg kg^(–1),respectively,which were 31.31,14.25 and 34.47%higher than those without AMF inoculation.The AMF community dominated by Glomus and Acaulospora in winter Chinese milk vetch had a more positive effect on the improvement of rice yield,while the AMF community dominated by Glomus in winter ryegrass soil was more conducive to rice quality improvement.These findings have revealed the critical role of AMF communities from green manure in rice production,which lays the theoretical basis for a promising strategy to promote the sustainable development of southern winter agriculture. 展开更多
关键词 green manure paddy crop rotation AMF community rice yields rice quality
在线阅读 下载PDF
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system 被引量:3
10
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
在线阅读 下载PDF
Optimizing trade-offs between light transmittance and intraspecific competition under varying crop layouts in a maize-soybean strip relay cropping system 被引量:2
11
作者 Liang Feng Kai Shi +8 位作者 Xin Liu Huan Yang Tian Pu Yushan Wu Taiwen Yong Feng Yang Xiaochun Wang Kees Jan van Groenigen Wenyu Yang 《The Crop Journal》 SCIE CSCD 2024年第6期1780-1790,共11页
Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of... Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of light interception,light conversion,and LUE for relay maize and relay soybean to different crop layouts remains unclear.We aimed to quantify the effect of crop layout on intraspecific and interspecific competition,light interception,light conversion,LUE,and land productivity between relay maize and relay soybean.We conducted a field experiment for four consecutive years from 2017 to 2020 in Sichuan province,China,comparing different crop layouts(bandwidth 2.0 m,row ratio 2:2;bandwidth 2.4 m,row ratio 2:3;bandwidth 2.8 m,row ratio 2:4),with sole maize and sole soybean as controls.The results showed that relay maize in the 2.0 m bandwidth layout had the largest leaf area index and plant biomass,the lowest intraspecific competitive intensity and the highest aggressiveness.Compared to a bandwidth of 2.0 m,a bandwidth of 2.8 m significantly decreased relay maize leaf area index by 11%and plant biomass by 24%,while a 2.4 m bandwidth caused roughly half these reductions.The 2.0 m bandwidth layout also significantly improved crop light interception and LUE compared to sole maize.The light interception,light interception rate,light conversion rate and LUE in relay maize all decreased significantly with increasing bandwidth,but they increased in relay soybean.The increased light transmittance to the lower and middle canopy with increasing bandwidth did not compensate for the loss of relay maize yield caused by increased intraspecific competition.However,it enhanced the yield of relay soybeans.Increasing the bandwidth by 80 cm increased the relay maize intraspecific competition by 580%,and reduced maize yield by 33%,light interception by 12%,and LUE by 18%.In contrast,the relay soybean intraspecific competition was reduced by 64%,and the soybean yield was increased by 26%,light interception by 32%and LUE by 46%.Relay cropping systems with a 2.0 m bandwidth optimize the trade-off between light transmittance and intraspecific competition of relay crops.These systems achieve the highest LUE,group yield and economic benefits,making them a recommended crop layout for the southwest regions of China.Our study offers valuable insights for developing strip relay cropping systems that maximize light utilization and contributes to the theoretical understanding of efficient sunlight use in relay cropping practices. 展开更多
关键词 Crop layout Relay cropping MAIZE Intraspecific-interspecific relationships Land productivity
在线阅读 下载PDF
Mapping cropping patterns in the North China Plain over the past 300 years and an analysis of the drivers of change 被引量:1
12
作者 LI Shicheng LIU Yating +1 位作者 LI Jianrui ZHANG Xuezhen 《Journal of Geographical Sciences》 SCIE CSCD 2024年第10期2074-2088,共15页
It is essential to map the cropping patterns when investigating the mechanisms and impacts of climate change.However,the long-term evolution of cropping patterns remains poorly understood.This study collected hundreds... It is essential to map the cropping patterns when investigating the mechanisms and impacts of climate change.However,the long-term evolution of cropping patterns remains poorly understood.This study collected hundreds of records of cropping intensity and crop combinations from local gazetteers and other relevant articles for the North China Plain(NCP)over the past 300 years.Then,we analyzed the evolutionary characteristics and drivers in terms of climate change and advances in agricultural technology.From the Qing Dynasty to the 1950s,one harvest per year(1H1Y)was the dominant pattern in the northern NCP,and three harvests in two years(3H2Y)was the dominant pattern in Henan and Shandong provinces.The 1H1Y crops were cereals and sorghum.The 3H2Y crop combinations were spring maize,winter wheat,and beans.In the 1960s and 1970s,the cropping intensity in much of the NCP was two harvests per year(2H1Y)or a mix of the 2H1Y and 3H2Y patterns.In the 1980s,the cropping intensity in the NCP was dominated by 2H1Y.Since the 1960s,the 2H1Y crop compositions have been winter wheat-summer maize in Shandong,Henan,and Hebei provinces,while winter wheat-rice dominated north of the Huaihe River.The 3H2Y summer crop changed from beans to maize/cereals over time.Climate warming was not the dominant factor driving the evolution of cropping intensity in the NCP.Advances in agricultural production conditions and reforms in production relations have promoted the rapid development of multiple cropping since the 1950s. 展开更多
关键词 North China Plain Qing Dynasty cropping intensity crop combinations crop harvest frequency climate change
原文传递
Effects of Continuous Cropping on Soil Microbial Flora and Research Progress of Continuous Cropping Obstacle Reduction Techniques 被引量:1
13
作者 Qingmei LI Zebin CHEN +6 位作者 Yue YAN Shengguang XU Zhiwei FAN Li LIN Song JIN Tianfang WANG Zaixiang ZHU 《Agricultural Biotechnology》 2024年第5期49-54,共6页
Continuous cropping can bring economic benefits in a short time and meet the growing demand of agricultural products such as grain,but long-term continuous cropping will accelerate soil degradation,lead to the reducti... Continuous cropping can bring economic benefits in a short time and meet the growing demand of agricultural products such as grain,but long-term continuous cropping will accelerate soil degradation,lead to the reduction of crop yield and the increase of disease rate,and destroy the balance of soil microbial structure.Therefore,it is not conducive to the sustainable development of soil ecosystem.In this paper,the problems caused by continuous cropping,such as imbalance of soil microbial flora,decrease of biodiversity,accumulation of root exudates and their effects on soil fertility and crop growth,were summarized,and some measures were suggested to alleviate the obstacles of continuous cropping,such as reasonable rotation,adjustment of intercropping planting mode and application of biological fertilizers.Moreover,the paper also looked forward to the development trend of continuous cropping obstacle reduction techniques,including the integration and application of biological techniques,the promotion of green ecological techniques and the application of intelligent management system.This study provides theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promote the healthy and sustainable development of modern agriculture. 展开更多
关键词 SOIL MICROORGANISM Continuous cropping obstacle Reduction technique Soil improvement
在线阅读 下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration 被引量:1
14
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM Soil remediation Soil improvement
在线阅读 下载PDF
The microbial community,nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat-maize double-cropping systems
15
作者 Zeli Li Fuli Fang +10 位作者 Liang Wu Feng Gao Mingyang Li Benhang Li Kaidi Wu Xiaomin Hu Shuo Wang Zhanbo Wei Qi Chen Min Zhang Zhiguang Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3592-3609,共18页
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi... Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients. 展开更多
关键词 potassium fertilizer gradient microbial community wheat-maize double cropping climate change YIELD
在线阅读 下载PDF
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
16
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 cropping system Water-saving irrigation North China Plain Nitrogen optimization Sustainable intensification
在线阅读 下载PDF
Impact of Continuous Cropping on Soil Phenolic Acid Substances and Research Progress on Continuous Cropping Obstacle Reduction Techniques
17
作者 Yue YAN Zebin CHEN +6 位作者 Qingmei LI Shengguang XU Zhiwei FAN Li LIN Song JIN Tianfang WANG Zaixiang ZHU 《Agricultural Biotechnology》 2024年第4期57-62,共6页
At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degr... At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degrees.This paper summarized the effects of continuous cropping on soil phenolic acids and the research progress of continuous cropping obstacle reduction techniques,aiming at providing theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promoting the healthy and sustainable development of modern agriculture. 展开更多
关键词 SOIL Phenolic acid Continuous cropping obstacle Reduction technique soil improvement
在线阅读 下载PDF
Several Cotton Rotation and Intercropping Systems in Cotton Planting Area of Eastern Henan Province
18
作者 Yubei DU Zongyan CHU +6 位作者 Yuxuan TANG Mingjuan CHANG Chao WU Yanan ZHAN Suling LIU Xiaohong SI Yuqin ZHOU 《Plant Diseases and Pests》 2024年第4期40-42,共3页
In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index... In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system. 展开更多
关键词 COTTON INTERcropping Crop rotation Wheat Dutch bean WATERMELON
在线阅读 下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
19
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse Forage cropping Systems
在线阅读 下载PDF
Satellite Multi-Temporal Data and Cropping Pattern Approach for Green Gram Crop Management in the Lower Midland Zone IV and V in Kenya
20
作者 Kalekye Hilda Manzi Shadrack Ngene Joseph P. Gweyi-Onyango 《Advances in Remote Sensing》 2024年第2期41-71,共31页
Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ... Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones. 展开更多
关键词 MULTI-TEMPORAL cropping Patterns Spectral Signatures Landsat 8 CROP Identification
在线阅读 下载PDF
上一页 1 2 121 下一页 到第
使用帮助 返回顶部