期刊文献+
共找到25,527篇文章
< 1 2 250 >
每页显示 20 50 100
Occasional Tillage in a Field Established under Conservation Agriculture for Tomato Cropping
1
作者 Roberto Botelho Ferraz Branco Bruno Cesar Ananias +2 位作者 Andréia Cristina Silva Hirata Humberto Sampaio de Araújo Jane Maria de Carvalho Silveira 《Agricultural Sciences》 2025年第1期31-47,共17页
The Conservation Agriculture (CA) is a current concept drives to save natural resources for agricultural production based on the minimum soil disturbance or no-tillage, crop rotation and permanent maintenance of straw... The Conservation Agriculture (CA) is a current concept drives to save natural resources for agricultural production based on the minimum soil disturbance or no-tillage, crop rotation and permanent maintenance of straw on soil surface. The increasing in soil density is a problem to achieve great copping yield under CA, so occasional one-time tillage is considered as an alternative to continuous no-tillage. In this way, this experiment was carried out to compare occasional tillage and no-tillage interacting with cover crops in a field established under conservation agriculture. Thus, the experimental treatments were set up by two tillage methods, conventional tillage and no-tillage and two cover crops, white lupin and millet setting in a randomized blocks with split plot design with four replications. The traits evaluated in the research were soil fertility, soil resistance to penetration, soil moisture and tomato agronomic performance. No-tillage was more efficient to preserve soil moisture;however soil fertility, soil resistance to penetration and tomato yield were favored by conventional tillage. Regarding to cover crops white lupin increased the soil K concentration and enhanced the tomato growth. Although occasional tillage had better performance to the soil fertility and tomato yield, we highlighted that CA is the better way to increase soil health and soil and water conservation along the time leading to so desired regenerative agriculture. 展开更多
关键词 No Tillage crop Rotation Cover crops Solanum lycopersicum L.
在线阅读 下载PDF
A New Method and Tool for Writing Global History: A Review of Moving Crops and the Scales of History
2
作者 DU Xinhao 《Chinese Annals of History of Science and Technology》 2025年第1期110-114,共5页
From a very early period,the Chinese already vaguely sensed that the cultivation of crops required an intricate system.The third century BCE work Master Lü’s Spring and Autumn Annals(Lüshi chunqiu吕氏春秋)s... From a very early period,the Chinese already vaguely sensed that the cultivation of crops required an intricate system.The third century BCE work Master Lü’s Spring and Autumn Annals(Lüshi chunqiu吕氏春秋)states that crops were fed by heaven and raised by earth,and that harvests depended on the farmers who worked the land.Therefore,these three elements,that is,heaven,earth,and farmers,together with crops,jointly constituted a complex community.According to the ancient Chinese,moving a crop away from its native place could bring huge benefits to the new area to which the crop was moved.When writing and compiling Fundamentals of Agriculture and Sericulture(Nongsang jiyao农桑辑要),the officials of the Agricultural Extension Bureau司农司in the Yuan dynasty(1271–1368)excitedly noted the changes brought about by non-native crops to the agriculture of the Central Plains of China中原:“Ramie(Boehmeria nivea)is a crop native to southern China,while cotton(Gossypium herbaceum)comes from the Western Regions西域.In recent years,nevertheless,ramie has been introduced to Henan,while cotton has started to be planted in Shaanxi.The two crops thrive and show no difference from local crops.Farmers in the two regions benefit a lot therefrom”(Agricultural Extension Bureau 1888,juan 2:21). 展开更多
关键词 cultivation crops moving crops Yuan Dynasty cotton RAMIE L shi Chunqiu Chinese agriculture global history
在线阅读 下载PDF
Crop wild relatives:Harnessing ancestral diversity for future food security
3
作者 Long Mao Dengcai Liu Takao Komatsuda 《The Crop Journal》 2025年第5期1319-1321,共3页
Modern crops were derived from wild ancestors between 8000 and 12,000 years ago in a process called domestication,when humans selected plant types that gave better yield.For cereal plants,they carry so-called “domest... Modern crops were derived from wild ancestors between 8000 and 12,000 years ago in a process called domestication,when humans selected plant types that gave better yield.For cereal plants,they carry so-called “domestication syndromes”,such as non-shattering spikes,free threshing grains,shorter seed dormancy,and larger grain size[1].But these early crop breeders selected only a small number of domesticated plants to satisfy their limited need,leading to a phenomenon called “domestication bottleneck”resulting in restricted genetic diversity among crop cultivars.Untapped crop wild relatives(CWRs)remain a source of traits to be bred into new cultivars with resilience to challenges facing modern agriculture. 展开更多
关键词 genetic diversity domesticated plants crop breeders domestication bottleneck crop wild relatives DOMESTICATION humans selected plant types resilience
在线阅读 下载PDF
G-proteins at the crossroads of signaling and stress tolerance in horticultural crops
4
作者 Xiao Liang Yimei Li +2 位作者 Wenshan Zai Shaoyong Huang Kai Shi 《Horticultural Plant Journal》 2025年第5期1744-1760,共17页
Heterotrimeric G protein serves as a central hub in plant signal transduction,playing a pivotal role in integrating endogenous developmental signals and external environmental cues.While significant advances have been... Heterotrimeric G protein serves as a central hub in plant signal transduction,playing a pivotal role in integrating endogenous developmental signals and external environmental cues.While significant advances have been made in understanding G protein signaling mechanisms in model plants such as Arabidopsis and major crops like rice and maize,the precise regulatory roles in growth,development,and adaptation in horticultural crops are still poorly understood.In this review,we systematically summarize recent advances in uncovering both conserved and species-specific regulatory mechanisms of G protein signaling across diverse plant species.We also highlight key discoveries on the crosstalk between G protein-mediated pathways and other signaling cascades,such as hormone signaling,transcriptional regulation,and stress response networks.Finally,we discuss the potential applications of G protein signaling research in future crop improvement,offering new perspectives for advancing sustainable horticultural production. 展开更多
关键词 G protein Horticultural crops Agronomic potential Environmental adaptation Intelligent crop improvement
在线阅读 下载PDF
Ozone pollution induced-yield loss of major staple crops in China and effects from COVID-19
5
作者 Haiyang Liu Siyuan Wang +5 位作者 Guangsheng Chen Zhaozhong Feng Di Liu Wenxiu Zhang Shufen Pan Hanqin Tian 《Journal of Environmental Sciences》 2025年第11期804-820,共17页
Surface ozone(O_(3))pollution showed a continuous increasing trend during the recent decades in China,posing an increasing threat to food security.A wide range of yield reductions have been reported and thus more stud... Surface ozone(O_(3))pollution showed a continuous increasing trend during the recent decades in China,posing an increasing threat to food security.A wide range of yield reductions have been reported and thus more studies are needed to narrow down the uncertainty resulting from spatiotemporal accuracy of O_(3) metrics and extrapolation methods.Based on a high spatial resolution(0.1°)hourly surface O_(3) data,here we analyzed the spatiotemporal O_(3) pollution patterns and impacts on yield,production and economic losses for wheat,rice,and maize in China during 2005–2020.The accumulated O_(3) exposure over a threshold of 40 ppb(AOT40)increased by 10%during 2005–2019,and a decrease of 5.56%was observed in 2020 due to the COVID-19 lockdowns.Rising O_(3) pollution reduced national level wheat,rice and maize yields by 14.51%±0.43%,11.10%±0.6%,and 3.99%±0.11%,respectively.A Business-As-Usual projection suggested that the relative yield loss(RYL)would potentially reach 8%–18%at the national scale by 2050 if no emission control is implemented.COVID-19 lockdowns in 2020 led to significantly reduced RYL for maize(0.52%)and rice(2.17%)but not for wheat(0.11%),with the largest reduction(1.88%–9.4%)in North China Plain,highlighting the potential benefits of emission control.Our findings provided robust evidence that rising O_(3) pollution has significantly affected China’s crop yields,production and economic losses,underscoring the urgent need to curb O_(3) pollution to safeguard food security,particularly in densely populated and industrialized regions. 展开更多
关键词 Surface O_(3) Cereal crops Exposure-response curve crop yield losses COVID-19 Food security
原文传递
Increased corn cultivation exacerbated crop residue burning in Northeast China in the 21st century
6
作者 Yiqun Shang Yanyan Pei +7 位作者 Ping Fu Chuantao Ren Zhichao Li Jianfeng Ren Xinqi Zheng Yuanyuan Di Yan Zhou Jinwei Dong 《Geography and Sustainability》 2025年第3期86-97,共12页
China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particular... China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particularly in the Northeast China(NEC),where low temperature complicates crop residue management.Here,we examined the effects of cropping pattern adjustment on variations of CRB patterns in NEC during 2001-2021,utilizing the Moderate-resolution Imaging Spectroradiometer(MODIS)burned area dataset,the Visible Infrared Imaging Radiometer Suite(VIIRS)active fire dataset,and the high-accuracy crop planting area maps.Our results revealed an overall upward trend of 805.96 km^(2)/yr in NEC CRB from 2001 to 2021.The corn CRB area accounted for more than 50%of the total CRB area in each CRB-intensive year(2013-2021),and the increasing corn CRB generally aligns with the growing corn cultivation fields.A seasonal shift in CRB was found around 2017,with intensive CRB activities transitioning from both autumn and spring to primarily spring,particularly in the Songnen Plain and Sanjiang Plain.The changing trend of PM2.5 concentration aligned spatially with the shift.Moreover,the CRBs in spring of 2020 and 2021 were more severe than the major burning seasons in previous years,likely due to the disruptions during COVID-19 lockdowns.In certain years,the explanatory power of spring CRB on PM2.5 concentration was comparable to that of other natural factors,such as precipitation.This study underscores the critical need for sustained and region-specific strategies to tackle the challenges posed by CRBs. 展开更多
关键词 crop residue burning Northeast China Burned area Active fire cropping pattern adjustment
在线阅读 下载PDF
Integrating neglected and underutilized crops(NUCs)in South Asian cropping systems and diets:Challenges and prospects
7
作者 Saira SHAFIQ Muhammad ZIA UL HAQ +6 位作者 Syed Abbas RAZA NAQVI Wardha SARFARAZ Hina ALI Muhammad Majid ISLAM Gul Zaib HASSAN Muhammad NAWAZ Tasawer ABBAS 《Regional Sustainability》 2025年第4期1-11,共11页
The present review critically examines the role of neglected and underutilized crops(NUCs)in enhancing the resilience of South Asian cropping systems and diets in the context of climate change and nutritional challeng... The present review critically examines the role of neglected and underutilized crops(NUCs)in enhancing the resilience of South Asian cropping systems and diets in the context of climate change and nutritional challenges.This analysis reveals that integrating NUCs,such as millets,sorghums,amaranth,and indigenous legumes,into existing cropping systems can significantly improve the climate resilience,dietary diversity,and ecological sustainability of the food systems.These crops exhibit superior tolerance to abiotic stress and offer higher nutritional density compared to staple cereals,such as rice and wheat.However,their adoption faces challenges,including limited research investment,fragmented value chains,etc.We further identify that complementary cropping strategies and climate-smart agriculture(CSA)practices can optimize resource use while boosting smallholder farmers’income.NUCs are pivotal for the transformation of exist cropping systems towards nutrition-sensitive and climate-resilient agricultural and food systems.Strategic integration of NUCs can simultaneously address food insecurity,biodiversity loss,and rural poverty.Yet,unlocking their potential requires coordinated efforts in genetic improvement,market development,and policy frameworks tailored to regional contexts.This synthesis provides a comprehensive roadmap for policy-makers,researchers,and farmers to leverage NUCs as“Future Smart Food”.By bridging agronomic,nutritional,and socioeconomic perspectives,this study highlights the transformative potential of NUCs in achieving Sustainable Development Goals(SDGs)across South Asian countries. 展开更多
关键词 Neglected and underutilized crops(NUCs) Climate-smart agriculture(CSA) Climate change Food security cropping systems Dietary diversity South Asia
在线阅读 下载PDF
Improving irrigation management in wheat farms through the combined use of the AquaCrop and WinSRFR models
8
作者 Arash TAFTEH Mohammad R EMDAD Azadeh SEDAGHAT 《Journal of Arid Land》 2025年第2期245-258,共14页
Water is essential for agricultural production;however,climate change has exacerbated drought and water stress in arid and semi-arid areas such as Iran.Despite these challenges,irrigation water efficiency remains low,... Water is essential for agricultural production;however,climate change has exacerbated drought and water stress in arid and semi-arid areas such as Iran.Despite these challenges,irrigation water efficiency remains low,and current water management schemes are inadequate.Consequently,Iranian crops suffer from low water productivity,highlighting the urgent need for enhanced productivity and improved water management strategies.In this study,we investigated irrigation management conditions in the Hamidiyeh farm,Khuzestan Province,Iran and used the calibrated AquaCrop and WinSRFR(a surface irrigation simulation model)models to reflect these conditions.Subsequently,we examined different management scenarios using each model and evaluated the results from the second year.The findings demonstrated that combining simulation of the AquaCrop and WinSRFR models was highly effective and could be employed for irrigation management in the field.The AquaCrop model accurately simulated wheat yield in the first year,being 2.6 t/hm^(2),which closely aligned with the measured yield of 3.0 t/hm^(2).Additionally,using the WinSRFR model to adjust the length of existing borders from 200 to 180 m resulted in a 45.0%increase in efficiency during the second year.To enhance water use efficiency in the field,we recommended adopting borders with a length of 180 m,a width of 10 m,and a flow rate of 15 to 18 L/s.The AquaCrop and WinSRFR models accurately predicted border irrigation conditions,achieving the highest water use efficiency at a flow rate of 18 L/s.Combining these models increased farmers'average water consumption efficiency from 0.30 to 0.99 kg/m^(3)in the second year.Therefore,the results obtained from the AquaCrop and WinSRFR models are within a reasonable range and consistent with international recommendations.This adjustment is projected to improve the water use efficiency in the field by approximately 45.0%when utilizing the border irrigation method.Therefore,integrating these two models can provide comprehensive management solutions for regional farmers. 展开更多
关键词 Aquacrop crop modeling WinSRFR water management water use efficiency
在线阅读 下载PDF
What kind of cotton ideotype is adapted to agroecological cropping systems and climate change in Benin?
9
作者 ABOUA Dègbédji Charlemagne GÉRARDEAUX Edward +2 位作者 DEBAEKE Philippe BOULAKIA Stéphane SEKLOKA Emmanuel 《Journal of Cotton Research》 2025年第3期319-332,共14页
Background Agroecological cropping systems are recognised as an alternative way to ensure the sustainability of cotton(Gossypium hirsutum L.) production in the context of climate change and degradation of soil fertili... Background Agroecological cropping systems are recognised as an alternative way to ensure the sustainability of cotton(Gossypium hirsutum L.) production in the context of climate change and degradation of soil fertility. A study was conducted in Benin from 2020 to 2023 to compare six different cotton cultivars in three agroecological cropping systems in two cotton-growing zones. Plough-based tillage plus incorporation of cover crop biomass(PTI), conservation agriculture with strip tillage(CA_ST), and conservation agriculture with no tillage(CA_NT) were compared with the reference plough-based tillage(PT). The objective was to identify morpho-physiological traits of cotton that increase yield in agroecological cropping systems. Our approach combined a field experiment and crop simulation model(CSM) of CROPGRO-Cotton to evaluate the effects of genotype(G) × environment(E) × management(M) interactions on seed cotton yield(SCY).Results Cultivars Tamcot_camde and Okp768 and simulated ideotypes performed best in CA systems. Increased seed mass, large and thick leaves, and later maturity were identified as beneficial for yield enhancement in CA systems. Cultivars and ideotypes that combine these traits also resulted in better nitrogen and water use efficiencies in CA systems. Under different climate scenarios up to 2050, ideotypes designed could increase SCY in Benin.Conclusion A set of morpho-physiological traits associated with vegetative vigour is required to ensure a good SCY in agroecological cropping systems. These results provide scientific evidence and useful knowledge for breeders and research programmes on cropping systems focused on the adaptation of cotton to climate change. 展开更多
关键词 TILLAGE Agroecological practices Water status Gossypium hirsutum IDEOTYPE Seed cotton yield Cover crop CSM-cropGRO-Cotton
在线阅读 下载PDF
Establishment of a field visualization detection method for multiplex recombinase polymerase amplification combined with CRISPR/Cas12a in genetically modified crops 被引量:1
10
作者 YAN Jingying NI Liang +2 位作者 SHEN Xingyu LÜ Bingtao LI Yu 《浙江大学学报(农业与生命科学版)》 北大核心 2025年第3期391-401,共11页
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c... With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants. 展开更多
关键词 genetically modified crop recombinase polymerase amplification CRISPR/Cas12a field detection
在线阅读 下载PDF
Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize-wheat cropping systems 被引量:1
11
作者 Jinfeng Wang Xueyun Yang +3 位作者 Shaomin Huang Lei Wu Zejiang Cai Minggang Xu 《Journal of Integrative Agriculture》 2025年第1期290-305,共16页
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t... Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility. 展开更多
关键词 organic amendments crop yield yield sustainability soil fertility nutrient balance
在线阅读 下载PDF
Effects of increased seeding density on seedling characteristics,mechanical transplantation quality,and yields of rice with crop straw boards for seedling cultivation 被引量:1
12
作者 Yufei Ling Mengzhu Liu +5 位作者 Yuan Feng Zhipeng Xing Hui Gao Haiyan Wei Qun Hu Hongcheng Zhang 《Journal of Integrative Agriculture》 2025年第1期101-113,共13页
The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate dur... The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality. 展开更多
关键词 machine-transplanted rice crop straw board seedling rate seedling quality mechanical transplanta quality yield
在线阅读 下载PDF
Revolutionizing Crop Breeding:Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design 被引量:1
13
作者 Ying Zhang Guanmin Huang +5 位作者 Yanxin Zhao Xianju Lu Yanru Wang Chuanyu Wang Xinyu Guo Chunjiang Zhao 《Engineering》 2025年第1期245-255,共11页
The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This... The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology. 展开更多
关键词 crop breeding Next-generation artificial intelligence Multiomics big data Intelligent design breeding
在线阅读 下载PDF
Enhancing crop yields to ensure food security by optimizing photosynthesis 被引量:1
14
作者 Chunrong Li Xuejia Du Cuimin Liu 《Journal of Genetics and Genomics》 2025年第9期1082-1095,共14页
The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants conv... The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants convert light energy into chemical energy,to further enhance crop yields.Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency.There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods,and this increase is accompanied by improved photosynthesis.We explore various aspects of the light reactions designed to enhance crop yield,including light harvest efficiency through smart canopy systems,expanding the absorbed light spectrum to include far-red light,optimizing non-photochemical quenching,and accelerating electron transport flux.At the same time,we investigate carbon reactions that can enhance crop yield,such as manipulating Rubisco activity,improving the Calvin-Benson-Bassham cycle,introducing CO_(2)concentrating mechanisms in C_(3)plants,and optimizing carbon allocation.These strategies could significantly impact crop yield enhancement and help bridge the yield gap. 展开更多
关键词 PHOTOSYNTHESIS crop yields Calvin-Benson-Bassham(CBB)cycle CO_(2)concentrating mechanisms(CCMs)
原文传递
Optimizing Model Land Use and Crop Productivity in Agroforestry Farms for Food Security of Small Farmers in Burundi
15
作者 Audace Niyonzima Heidi Megerle +5 位作者 Habonimana Bernadette Christina Weber Ndihokubwayo Soter Jannis Bahnmüller Ngendakumana Serge Niragira Sanctus 《Agricultural Sciences》 2025年第1期123-145,共23页
Burundi faces major agricultural constraints, including land fragmentation, soil erosion, limited access to inputs, inadequate infrastructure and demographic pressures that exacerbate food insecurity. In order to addr... Burundi faces major agricultural constraints, including land fragmentation, soil erosion, limited access to inputs, inadequate infrastructure and demographic pressures that exacerbate food insecurity. In order to address the multiple challenges faced by farmers in rural areas, a study on improving agricultural productivity and food security in Burundi through optimized land use and diversified farming practices in agroforestry systems has been carried out. The study area is the communes of Giheta and Rutegama, all located in Burundi’s humid plateau livelihood zone, and involved 164 households grouped in coffee growing cooperatives supervised by the cooperative consortium COCOCA. The study uses a mathematical programming model to determine optimal crop selection based on factors such as production costs, yields and market demand. The findings of the study revealed significant insights into the demographic and socio-economic characteristics of the sampled population. Notably, 98.8% of respondents were engaged in agriculture, confirming the predominantly agricultural nature of Burundi. The results indicated that maize is the most important crop, occupying 33.9% of the average total cultivated area, followed by cassava at 26.5% and bananas at 19.4%. Together, these three crops accounted for a substantial portion of the total cultivated area, highlighting their significance in local agriculture. Beans and potatoes also play a role, occupying 14.4% and smaller areas, respectively. In terms of profitability, the study provides a detailed analysis of profit margins by crop. Bananas emerges as the most profitable crop, with a profit margin of 97.3%, followed closely by cassava at 96.1% and rice at 90.5%. These crops not only offered substantial yields relative to their production costs but also benefited from strong market demand. Other crops, such as beans (71.3%), coffee (70.3%), and vegetables (54.5%), also demonstrated considerable profitability, although they occupied smaller cultivated areas. Conversely, crops like pigeon peas (4.1%), potatoes (7.6%), and sweet potatoes (7.6%) exhibited the lowest profit margins, which may discourage farmers from investing in them unless other incentives, such as ecological benefits or local consumption needs, are present. Regarding the results, we therefore recommend to promote policies supporting agroforestry, improve market access and develop infrastructure to exploit these benefits. 展开更多
关键词 OPTIMIZATION Land Use crop Productivity AGROFORESTRY Smallholder Farmers BURUNDI
在线阅读 下载PDF
Evaluation of Soil Quality and Health Sustainability of Cocoa (Theobroma Cacao) Crop in Two Production Systems, Morona, Santiago, Ecuador
16
作者 Juan Haro Maribel Chillogallo +2 位作者 William Carrillo Carla Haro Cristian Jara 《Journal of Environmental & Earth Sciences》 2025年第1期306-320,共15页
The productive evaluation of cocoa in this research is proposed through an assessment of soil quality and crop health in an organic production system(SPO)Taisha canton and a conventional production system(SPCv)Morona ... The productive evaluation of cocoa in this research is proposed through an assessment of soil quality and crop health in an organic production system(SPO)Taisha canton and a conventional production system(SPCv)Morona canton.Methodology:Altieri and Nicholls establish a diagnosis of chemical,physical,biological and health indicators,with weightings high(10),medium(5)and low(1).Results:SPO soil quality,reflects weights 10(high)for ammonium ion,zinc,copper,iron,manganese,moisture retention,biological activity,compaction,apparent density,residue status,color,organic matter,root development,erosion incidence,5(medium)potassium,phosphorus,calcium,sulfur,pH,texture,1(low)magnesium,boron,topsoil depth,for crop health values of 10(high)appearance,crop growth,stress resistance or tolerance,weed competition,agrosilvopastoral system,plant diversity and management system,5(medium)potential yield,incidence of pests and diseases.The SPCv soil quality presented a weighting of 10(high)for nitrogen,zinc,copper,iron,biological activity,compaction,bulk density,color,organic matter,root development,erosion incidence,5(medium)manganese,pH,texture,moisture retention,residue status,1(low)potassium,phosphorus,calcium,magnesium,sulfur,boron,topsoil depth,crop health 10(high)crop appearance and growth,stress resistance or tolerance,weed competition,agrosilvopastoral system,plant diversity,management system,potential yield,5(medium)incidence of pests and diseases,1(low)surrounding natural diversity.Conclusions:The SPO for soil quality:7.41 and for crop health:7.59 weighted as sustainable,while the SPCv for soil quality:6 and crop health:6.76,resulting in a moderately sustainable production system. 展开更多
关键词 QUALITY crop Health Cocoa ORGANIC CONVENTIONAL
在线阅读 下载PDF
Quick Author Guideline for OIL CROP SCIENCE
17
《Oil Crop Science》 2025年第2期F0003-F0003,共1页
Manuscript Text and figures combined into a single file with page and line numbers up to3 MB in size in txt,doc,docx or tex files.Prepares your manuscript in the following order:Title page,Abstract,Introduction,Materi... Manuscript Text and figures combined into a single file with page and line numbers up to3 MB in size in txt,doc,docx or tex files.Prepares your manuscript in the following order:Title page,Abstract,Introduction,Materials and Methods,Results,Discussion,Acknowledgments,References,Tables,Figure Legends and Figures.Provide Cover letter and Supplementary Material(if necessary)at the same time. 展开更多
关键词 LINE oil crop text PAGE cover letter supplementary material SCIENCE MANUSCRIPT
在线阅读 下载PDF
Systematic Review of Machine Learning Applications in Sustainable Agriculture:Insights on Soil Health and Crop Improvement
18
作者 Vicky Anand Priyadarshani Rajput +4 位作者 Tatiana Minkina Saglara Mandzhieva Santosh Kumar Avnish Chauhan Vishnu D.Rajput 《Phyton-International Journal of Experimental Botany》 2025年第5期1339-1365,共27页
The digital revolution in agriculture has introduced data-driven decision-making,where artificial intelligence,especially machine learning(ML),helps analyze large and varied data sources to improve soil quality and cr... The digital revolution in agriculture has introduced data-driven decision-making,where artificial intelligence,especially machine learning(ML),helps analyze large and varied data sources to improve soil quality and crop growth indices.Thus,a thorough evaluation of scientific publications from 2007 to 2024 was conducted via the Scopus and Web of Science databases with the PRISMA guidelines to determine the realistic role of ML in soil health and crop improvement under the SDGs.In addition,the present review focused to identify and analyze the trends,challenges,and opportunities associated with the successful implementation of ML in agriculture.The assessment of various databases clearly revealed that ML implementation depends on crop management,while its limited potential in terms of soil health was explored.ML models,such as random forest and XGBoost,have demonstrated high accuracies of up to 99%in crop yield prediction and disease detection.Advanced ML frameworks,including the SHIDS-ADLT and EfficientNetB3,have improved soil health monitoring and plant disease classification.Irrigation management using ML has achieved over 50%water savings and irrigation efficiency by 10%-35%.These findings highlight the potential of ML to improve sustainable agricultural practices and soil health.A significant improvement discussed in this review is AutoML,which simplifies ML model implementation by automating feature selection,model selection,and hyperparameter tuning,reducing dependency on ML expertise.The integration of ML with remote sensing,Internet of Things(IoT),and big data analytics is expected to further transform the precision agriculture and real-time decisionmaking approaches to optimize resource utilization.Conclusively,the present review offers a quantitative perspective on the evolution of ML in agriculture,soil health management,crop yield prediction,and resource optimization. 展开更多
关键词 cropS IRRIGATION plant nutrients scientometric analysis soil health management SUSTAINABILITY
在线阅读 下载PDF
Optimizing the rotation cycle of previous crops increases crop yield and environmental sustainability in paddy field rotation
19
作者 Siyu Gun Jing Liu +6 位作者 Fangyuan Huang Junwei Wang Hui Cheng Qigan Li Zhan Jiang Yonghua Zhu Ni Ma 《The Crop Journal》 2025年第4期1281-1290,共10页
Global food production faces enormous challenges in increasing yields while promoting environmental sustainability.A field experiments in the ecotone between the Yangtze River Basin and the HuangHuai-Hai Plain evaluat... Global food production faces enormous challenges in increasing yields while promoting environmental sustainability.A field experiments in the ecotone between the Yangtze River Basin and the HuangHuai-Hai Plain evaluated the effects of changing preceding crop rotation cycles(wheat and rapeseed)on long-term wheat-rice(W)and rapeseed-rice(R)rotation systems.A comprehensive evaluation of crop rotation systems was conducted using life cycle assessment,considering productivity,economic benefits,carbon footprint(CF),and soil health.Compared with fallow-rice rotation(F),alternating rapeseed and wheat rotations increased equivalent yield by 60.4%-82.2%,reduced CF by 0.3%-5.7%,and improved soil health by 0.3%-47.5%.Additionally,adding rapeseed to rotations increased soil nutrient content and raised soil organic carbon stocks by 31.3%-40.5%.The 3R rotation(3-year rapeseed-rice and 1-year wheat-rice)boosted rice yield by 82.2%and annual economic benefits by 84.4%,offering an effective model for optimizing long-term R rotations.Similarly,the 2W rotation(2-year wheat-rice and 1-year rapeseed rice)enhanced rice yield by 70.0% and annual economic benefits by 65.9%,providing a successful example for optimizing long-term W rotations.The 3R rapeseed-based rotation and the 2W wheatbased rotation demonstrated good environmental sustainability.These rotation systems have broad potential in sustainable intensive farming,especially in China and similar regions. 展开更多
关键词 crop rotation RAPESEED Wheat Environmental sustainability Soil health
在线阅读 下载PDF
The Impact of Intensified Aridization Caused by Moisture Deficit on the Productivity of Grain Crops in Northern Kazakhstan
20
作者 Aisulu Amirkhanovna Kusainova Galina Nikolaevna Chistyakova Gaukhar Makhanovna Zhangozhina 《Research in Ecology》 2025年第3期199-211,共13页
The article examines the impact of increased aridization of the territory due to an increase in air temperature,reduced precipitation,and the formation of moisture deficiency on grain yields in Northern Kazakhstan.The... The article examines the impact of increased aridization of the territory due to an increase in air temperature,reduced precipitation,and the formation of moisture deficiency on grain yields in Northern Kazakhstan.The most important result of the work is the revealed inverse relationship between grain yields and the temperature of the growing season:low-yielding years are associated with high temperatures and droughts,and high-yielding years are associated with lower temperatures and an optimal ratio of heat and moisture.The novelty of this study is the use of the method of hydrological and climatic calculations in identifying the nature of temperature variability and precipitation in the territory of Northern Kazakhstan for the modern period(1991–2020)compared with the base period(1961–1990).At all the studied meteorological stations,there is a tendency for the average annual temperature and the temperature of the growing season to increase:in the forest-steppe zone with an average warming intensity of 0.3–0.33℃ per decade;in the steppe zone by 0.2–0.43℃ per decade;and in the growing season by 0.2–0.7℃ per decade.The air temperature in the steppe zone is rising more intensively than in the forest-steppe zone,and precipitation in the forest-steppe zone has changed more than in the steppe zone.An increase in the average annual air temperature during the growing season(May–August),combined with a shortage of atmospheric moisture or a constant amount of it,led to an increase in the degree of aridization of the territory,an increase in the frequency of droughts in the steppe zone of Northern Kazakhstan. 展开更多
关键词 Aridization Air Temperature Precipitation Moisture Deficiencies crop Yield Northern Kazakhstan
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部