In this paper, we deal with the following problem:By variational method, we prove the existenceof a nontrivial weak solution whenand the existence of a cylindricalweak solution when
The ferroelectric transitions of several SrTiO3-based ferroelectrics are investigated experimentally and theoretically, with special attention to the critical scaling exponents associated with the phase transitions, i...The ferroelectric transitions of several SrTiO3-based ferroelectrics are investigated experimentally and theoretically, with special attention to the critical scaling exponents associated with the phase transitions, in order to understand the competition among quantum fluctuations (QFs), quenched disorder, and ferroelectric ordering. Two representative systems with sufficiently strong QFs and quenched disorders in competition with the ferroelectric ordering are investigated. We start from non-stoichiometric SrTiO3(STO) with the Sr/Ti ratio deviating slightly from one, which is believed to maintain strong QFs. Then, we address Ba/Ca co-doped Sr1-x(Ca0.6389Ba0.3611)xTiO3(SCBT) with the averaged Sr-site ionic radius identical to the Sr2+ ionic radius, which is believed to offer remarkable quenched disorder associated with the Sr-site ionic mismatch. The critical exponents associated with polarization P and dielectric susceptibility ε, respectively, as functions of temperature T close to the critical point Tc, are evaluated. It is revealed that both non-stoichiometric SrTiO3 and SCBT exhibit much bigger critical exponents than the Landau mean-field theory predictions. These critical exponents then decrease gradually with increasing doping level or deviation of Sr/Ti ratio from one. A transverse Ising model applicable to the Sr-site doped STO (e.g., Sr1-xCaxTiO3) at low level is used to explain the observed experimental data. It is suggested that the serious deviation of these critical exponents from the Landau theory predictions in these STO-based systems is ascribed to the significant QFs and quenched disorder by partially suppressing the long-range spatial correlation of electric dipoles around the transitions. The present work thus sheds light on our understanding of the critical behaviors of ferroelectric transitions in STO in the presence of quantum fluctuations and quenched disorder, whose effects have been demonstrated to be remarkable.展开更多
In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequal...In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.展开更多
This paper is concerned with the evolutionary p-Laplacian with interior and boundary sources.The critical exponents for the nonlinear sources are determined.
In this paper, we establish the existence of at least five distinct solutions to a p-Laplacian problems involving critical exponents and singular cylindrical potential, by using the Nehari manifold, concentration-comp...In this paper, we establish the existence of at least five distinct solutions to a p-Laplacian problems involving critical exponents and singular cylindrical potential, by using the Nehari manifold, concentration-compactness principle and mountain pass theorem展开更多
Let B1 С RN be a unit ball centered at the origin. The main purpose of this paper is to discuss the critical dimension phenomenon for radial solutions of the following quasilinear elliptic problem involving critical ...Let B1 С RN be a unit ball centered at the origin. The main purpose of this paper is to discuss the critical dimension phenomenon for radial solutions of the following quasilinear elliptic problem involving critical Sobolev exponent and singular coefficients:{-div(|△u|p-2△u)=|x|s|u|p*(s)-2u+λ|x|t|u|p-2u, x∈B1, u|σB1 =0, where t, s〉-p, 2≤p〈N, p*(s)= (N+s)pN-p andλ is a real parameter. We show particularly that the above problem exists infinitely many radial solutions if the space dimension N 〉p(p-1)t+p(p2-p+1) andλ∈(0,λ1,t), whereλ1,t is the first eigenvalue of-△p with the Dirichlet boundary condition. Meanwhile, the nonexistence of sign-changing radial solutions is proved if the space dimension N ≤ (ps+p) min{1, p+t/p+s}+p2p-(p-1) min{1, p+tp+s} andλ〉0 is small.展开更多
Using an exact solution of the one-dimensional quantum transverse-field Ising model, we calculate the critical exponents of the two-dimensional anisotropic classical Ising model (IM). We verify that the exponents ar...Using an exact solution of the one-dimensional quantum transverse-field Ising model, we calculate the critical exponents of the two-dimensional anisotropic classical Ising model (IM). We verify that the exponents are the same as those of isotropic claesical IM. Our approach provides an alternative means of obtaining and verifying these well-known results.展开更多
In this paper,we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball.We are interested in the critical global expon...In this paper,we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball.We are interested in the critical global exponent q_o and the critical Fujita exponent q_c for the problem considered,and show that q_o=q_c for the multidimensional Non-Newtonian polytropic filtration equation with nonlinear boundary sources,which is quite different from the known results that q_o〈q_c for the onedimensional case;moreover,the value is different from the slow case.展开更多
We explore the tricritical points and the critical lines of both Blume Emery Griffiths and Ising model within long-range interactions in the microcanonical ensemble.For K = Kmtp,the tricritical exponents take the val...We explore the tricritical points and the critical lines of both Blume Emery Griffiths and Ising model within long-range interactions in the microcanonical ensemble.For K = Kmtp,the tricritical exponents take the valuesβ = 1/4,1 =γ^-≠γ^+ = 1/2 and 0 =α^-≠α^+ =-1/2,which disagree with classical(mean ffeld) values.When K > Kmtp,the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters(Kctp),where the values of the critical expoents become β = 1/2,1 = γ^-≠γ^+= 2and 0 =α^-≠α^+ = 1.展开更多
The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay prop...The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay properties of nonnegative radial ground state solutions.展开更多
In this paper we prove that the critical exponents of Besov spaces on a compact set possessing an Ahlfors regular measure is an invariant under Lipschitz transforms.Under mild conditions,the critical exponent of Besov...In this paper we prove that the critical exponents of Besov spaces on a compact set possessing an Ahlfors regular measure is an invariant under Lipschitz transforms.Under mild conditions,the critical exponent of Besov spaces of certain selfsimilar sets coincides with the walk dimension,which plays an important role in the analysis on fractals.As an application,we show examples having different critical exponents are not Lipschitz equivalent.展开更多
In this paper,we are concerned with the autonomous Choquard equation−Δu+u=(Iα∗|u|^(α/N+1))|u|^(α/N−1)u+|u|^(2∗−2)u+f(u)inR^(N),where N≥3,Iαdenotes the Riesz potential of orderα∈(0,N),the exponentsα/N+1 and 2^...In this paper,we are concerned with the autonomous Choquard equation−Δu+u=(Iα∗|u|^(α/N+1))|u|^(α/N−1)u+|u|^(2∗−2)u+f(u)inR^(N),where N≥3,Iαdenotes the Riesz potential of orderα∈(0,N),the exponentsα/N+1 and 2^(∗)=2N/(N−2)are critical with respect to the Hardy-Littlewood-Sobolev inequality and Sobolev embedding,respectively.Based on the variational methods,by using the minimax principles and the Pohožaev manifold method,we prove the existence of ground state solution under some suitable assumptions on the perturbation f.展开更多
In this paper, we prove some sharp non-existence results for Dirichlet prob- lems of complex Hessian equations. In particular, we consider a complex Monge- Ampere equation which is a local version of the equation of K...In this paper, we prove some sharp non-existence results for Dirichlet prob- lems of complex Hessian equations. In particular, we consider a complex Monge- Ampere equation which is a local version of the equation of Kahler-Einstein metric. The non-existence results are proved using the Pohozaev method. We also prove existence results for radially symmetric solutions. The main difference of the complex case with the real case is that we don't know if a priori radially symmetric property holds in the complex case.展开更多
This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corr...This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corresponding bet Hardy-Sobolev constant are found, the existence of positive solutions to the system is established and the asymptotic properties of solutions at the singular point are proved.展开更多
In this paper,a system of elliptic equations is investigated,which involves Hardy potential and multiple critical Sobolev exponents.By a global compactness argument of variational method and a fine analysis on the Pal...In this paper,a system of elliptic equations is investigated,which involves Hardy potential and multiple critical Sobolev exponents.By a global compactness argument of variational method and a fine analysis on the Palais-Smale sequences created from related approximation problems,the existence of infinitely many solutions to the system is established.展开更多
In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions ...In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.展开更多
In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions...In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions to the problem.展开更多
The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means o...The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.展开更多
In this paper, by using the idea of category, we investigate how the shape of the graph of h(x) affects the number of positive solutions to the following weighted nonlinear elliptic system: = ( N-2-2a 2. where 0 ...In this paper, by using the idea of category, we investigate how the shape of the graph of h(x) affects the number of positive solutions to the following weighted nonlinear elliptic system: = ( N-2-2a 2. where 0 is a smooth bounded domain in ]1N (N 〉 3), A, cr 〉 0 are parameters, 0 ≤ μ 〈 μa a 2 ' h(x), KI(X) and K2(x) are positive continuous functions in , 1 〈 q 〈 2, a, β 〉 1 and a + β = 2*(a,b) (2* (a, b) 2N = N-2(1+a-b) is critical Sobolev-Hardy exponent). We prove that the system has at least k nontrivial nonnegative solutions when the pair of the parameters (), r) belongs to a certain subset of N2.展开更多
This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes...This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.展开更多
基金Supported by the National Science Foundation of China(11071245 and 11101418)
文摘In this paper, we deal with the following problem:By variational method, we prove the existenceof a nontrivial weak solution whenand the existence of a cylindricalweak solution when
基金the National Basic Research Program of China(Grant Nos.2011CB922101 and 2009CB623303)the National Natural Science Foundation of China(Grant Nos.11234005 and 11074113)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘The ferroelectric transitions of several SrTiO3-based ferroelectrics are investigated experimentally and theoretically, with special attention to the critical scaling exponents associated with the phase transitions, in order to understand the competition among quantum fluctuations (QFs), quenched disorder, and ferroelectric ordering. Two representative systems with sufficiently strong QFs and quenched disorders in competition with the ferroelectric ordering are investigated. We start from non-stoichiometric SrTiO3(STO) with the Sr/Ti ratio deviating slightly from one, which is believed to maintain strong QFs. Then, we address Ba/Ca co-doped Sr1-x(Ca0.6389Ba0.3611)xTiO3(SCBT) with the averaged Sr-site ionic radius identical to the Sr2+ ionic radius, which is believed to offer remarkable quenched disorder associated with the Sr-site ionic mismatch. The critical exponents associated with polarization P and dielectric susceptibility ε, respectively, as functions of temperature T close to the critical point Tc, are evaluated. It is revealed that both non-stoichiometric SrTiO3 and SCBT exhibit much bigger critical exponents than the Landau mean-field theory predictions. These critical exponents then decrease gradually with increasing doping level or deviation of Sr/Ti ratio from one. A transverse Ising model applicable to the Sr-site doped STO (e.g., Sr1-xCaxTiO3) at low level is used to explain the observed experimental data. It is suggested that the serious deviation of these critical exponents from the Landau theory predictions in these STO-based systems is ascribed to the significant QFs and quenched disorder by partially suppressing the long-range spatial correlation of electric dipoles around the transitions. The present work thus sheds light on our understanding of the critical behaviors of ferroelectric transitions in STO in the presence of quantum fluctuations and quenched disorder, whose effects have been demonstrated to be remarkable.
基金Supported by NSFC(10471047)NSF Guangdong Province(05300159).
文摘In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.
基金supported by NSFCResearch Fundfor the Doctoral Program of Higher Education of China,Fundamental Research Project of Jilin University(200903284)Graduate Innovation Fund of Jilin University(20101045)
文摘This paper is concerned with the evolutionary p-Laplacian with interior and boundary sources.The critical exponents for the nonlinear sources are determined.
文摘In this paper, we establish the existence of at least five distinct solutions to a p-Laplacian problems involving critical exponents and singular cylindrical potential, by using the Nehari manifold, concentration-compactness principle and mountain pass theorem
基金supported by the National Natural Science Foundation of China(11326139,11326145)Tian Yuan Foundation(KJLD12067)Hubei Provincial Department of Education(Q20122504)
文摘Let B1 С RN be a unit ball centered at the origin. The main purpose of this paper is to discuss the critical dimension phenomenon for radial solutions of the following quasilinear elliptic problem involving critical Sobolev exponent and singular coefficients:{-div(|△u|p-2△u)=|x|s|u|p*(s)-2u+λ|x|t|u|p-2u, x∈B1, u|σB1 =0, where t, s〉-p, 2≤p〈N, p*(s)= (N+s)pN-p andλ is a real parameter. We show particularly that the above problem exists infinitely many radial solutions if the space dimension N 〉p(p-1)t+p(p2-p+1) andλ∈(0,λ1,t), whereλ1,t is the first eigenvalue of-△p with the Dirichlet boundary condition. Meanwhile, the nonexistence of sign-changing radial solutions is proved if the space dimension N ≤ (ps+p) min{1, p+t/p+s}+p2p-(p-1) min{1, p+tp+s} andλ〉0 is small.
基金The project supported by National Natural Science Foundation of China under Grant No. 10347101 and the grant from Beijing Normal University
文摘Using an exact solution of the one-dimensional quantum transverse-field Ising model, we calculate the critical exponents of the two-dimensional anisotropic classical Ising model (IM). We verify that the exponents are the same as those of isotropic claesical IM. Our approach provides an alternative means of obtaining and verifying these well-known results.
基金The Fundamental Research Funds for the Central Universities and the NSF(11071100) of China
文摘In this paper,we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball.We are interested in the critical global exponent q_o and the critical Fujita exponent q_c for the problem considered,and show that q_o=q_c for the multidimensional Non-Newtonian polytropic filtration equation with nonlinear boundary sources,which is quite different from the known results that q_o〈q_c for the onedimensional case;moreover,the value is different from the slow case.
基金Supported by the National Natural Science Foundation of China under Grant No.11104032
文摘We explore the tricritical points and the critical lines of both Blume Emery Griffiths and Ising model within long-range interactions in the microcanonical ensemble.For K = Kmtp,the tricritical exponents take the valuesβ = 1/4,1 =γ^-≠γ^+ = 1/2 and 0 =α^-≠α^+ =-1/2,which disagree with classical(mean ffeld) values.When K > Kmtp,the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters(Kctp),where the values of the critical expoents become β = 1/2,1 = γ^-≠γ^+= 2and 0 =α^-≠α^+ = 1.
基金supported by the Natural Science Research Project of Anhui Educational Committee(2023AH040155)Zhisu Liu's research was supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011679+2 种基金2024A1515012704)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG2106211CUGST2).
文摘The paper is concerned with a class of elliptic equation with critical exponent and Dipole potential.More precisely,we make use of the refined Sobolev inequality with Morrey norm to obtain the existence and decay properties of nonnegative radial ground state solutions.
基金The second author is supported by NSFC Nos.10631040 and 11471075。
文摘In this paper we prove that the critical exponents of Besov spaces on a compact set possessing an Ahlfors regular measure is an invariant under Lipschitz transforms.Under mild conditions,the critical exponent of Besov spaces of certain selfsimilar sets coincides with the walk dimension,which plays an important role in the analysis on fractals.As an application,we show examples having different critical exponents are not Lipschitz equivalent.
基金This paper is supported by the National Natural Science Foundation of China(No.11971393).
文摘In this paper,we are concerned with the autonomous Choquard equation−Δu+u=(Iα∗|u|^(α/N+1))|u|^(α/N−1)u+|u|^(2∗−2)u+f(u)inR^(N),where N≥3,Iαdenotes the Riesz potential of orderα∈(0,N),the exponentsα/N+1 and 2^(∗)=2N/(N−2)are critical with respect to the Hardy-Littlewood-Sobolev inequality and Sobolev embedding,respectively.Based on the variational methods,by using the minimax principles and the Pohožaev manifold method,we prove the existence of ground state solution under some suitable assumptions on the perturbation f.
文摘In this paper, we prove some sharp non-existence results for Dirichlet prob- lems of complex Hessian equations. In particular, we consider a complex Monge- Ampere equation which is a local version of the equation of Kahler-Einstein metric. The non-existence results are proved using the Pohozaev method. We also prove existence results for radially symmetric solutions. The main difference of the complex case with the real case is that we don't know if a priori radially symmetric property holds in the complex case.
基金supported by National Natural Science Foundation of China (Grant No. 10771219, 11071092)the PhD Specialized Grant of the Ministry of Education of China (Grant No. 20100144110001)
文摘This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corresponding bet Hardy-Sobolev constant are found, the existence of positive solutions to the system is established and the asymptotic properties of solutions at the singular point are proved.
基金supported by National Natural Science Foundation of China(Grant Nos.10771219 and 11071092)the PhD Specialized Grant of the Ministry of Education of China(Grant No.20110144110001)
文摘In this paper,a system of elliptic equations is investigated,which involves Hardy potential and multiple critical Sobolev exponents.By a global compactness argument of variational method and a fine analysis on the Palais-Smale sequences created from related approximation problems,the existence of infinitely many solutions to the system is established.
文摘In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.
基金supported partly by the National Natural Science Foundation of China (10771219)
文摘In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions to the problem.
基金supported by NSFC(10771085)Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Educationthe 985 Program of Jilin University
文摘The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.
文摘In this paper, by using the idea of category, we investigate how the shape of the graph of h(x) affects the number of positive solutions to the following weighted nonlinear elliptic system: = ( N-2-2a 2. where 0 is a smooth bounded domain in ]1N (N 〉 3), A, cr 〉 0 are parameters, 0 ≤ μ 〈 μa a 2 ' h(x), KI(X) and K2(x) are positive continuous functions in , 1 〈 q 〈 2, a, β 〉 1 and a + β = 2*(a,b) (2* (a, b) 2N = N-2(1+a-b) is critical Sobolev-Hardy exponent). We prove that the system has at least k nontrivial nonnegative solutions when the pair of the parameters (), r) belongs to a certain subset of N2.
文摘This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.