Triaxial creep tests on CCG specimens were systematically performed using aself-made creep seepage experimental apparatus for determining the creep law of CCG.An improved triaxial creep model of CCG was established on...Triaxial creep tests on CCG specimens were systematically performed using aself-made creep seepage experimental apparatus for determining the creep law of CCG.An improved triaxial creep model of CCG was established on the basis of a Nishiharamodel and another visco-elasto-plastic model,parameters of which were fitted on test data.Furthermore,the creep model is validated according to the result of triaxial creep experiments,and the outcome shows that the proposed triaxial creep model can properly characterizethe properties of various creep deformation phases of CCG,especially the acceleratingcreep phase.At the same time,the instability conditions of CCG were presentedbased on the discussion of the improved model's stability in terms of stability theories ofdifferential equation solution.展开更多
Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is...Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.展开更多
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin...To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.展开更多
As the anchoring foundation of the tension leg platform(TLP),suction caisson foundation is subjected to the long-term vertical pullout loads.But there are few studies on the mechanism of the unloading creep of soft cl...As the anchoring foundation of the tension leg platform(TLP),suction caisson foundation is subjected to the long-term vertical pullout loads.But there are few studies on the mechanism of the unloading creep of soft clay and long-term uplift bearing capacity of suction caisson foundations.To address this problem,unloading creep tests of soft clay were carried out to analyze the strain development with time under different confining pressures.The test results show that the creep curve rapidly develops in the early stage and tends to stabilize in the later stage.The unloading deviator stress is higher,the unloading creep deformation is greater and the soft clay has typical nonlinear creep characteristics.Therefore,by introducing the creep model and considering the influence of the deviator stress,the stress-dependent Merchant model is proposed to describe the unloading creep of soft clay.Then,the stress-dependent Merchant model is extended to a three-dimension constitutive model,and a finite element subroutine is developed to establish a finite element analysis method for analyzing the long-term uplift capacity of suction caisson foundations and validated with the long-term uplift bearing capacity results of caisson model.展开更多
To model the creep behavior of frozen soils, three creep stages have to be reasonably described (i.e., primary, secondary and tertiary stages). Based on a series of uniaxial creep test results, three creep models we...To model the creep behavior of frozen soils, three creep stages have to be reasonably described (i.e., primary, secondary and tertiary stages). Based on a series of uniaxial creep test results, three creep models were evaluated. It was shown that hypoplastic creep model has high prediction accuracy for both creep strain and strain rate in a wide stress range. The elementary rheological creep model can only be used for creep strains at low stress levels, because of the restraints of its mathematical construction. For the soft soil creep model, the progressive change from the primary to secondary and tertiary stages cannot be captured at high stress levels. Therefore, the elementary rheological and soft soil creep models can only be used for low stress levels without a tertiary stage; while the hypoplastic creep model is applicable at high stress levels with the three creep stages.展开更多
The failure phenomenon of thin-layered rock tunnels not only exhibits asymmetric spatial characteristics,but also significant time-dependent characteristics under high in-situ stress,which is attributed to the time-de...The failure phenomenon of thin-layered rock tunnels not only exhibits asymmetric spatial characteristics,but also significant time-dependent characteristics under high in-situ stress,which is attributed to the time-dependent fracture of thin-layered rocks.This paper conducted a series of true triaxial creep compression tests on typical thin-layered rock siliceous slate with acoustic emission technique to reveal its anisotropic time-dependent fracture characteristics.The anisotropic long-term strength,creep fracturing process,and fracture orientation characteristics of thin-layered rocks under different loading angles(b,u)and intermediate principal stress were summarized.A three-dimensional(3D)non-linear visco-plastic creep model for thin-layered rock was developed to simulate its anisotropic creep behavior.The time-dependent fracturing of rocks during true triaxial creep loading is reflected through the change of equivalent strain based on an improved Euler iteration method.By constructing the plastic potential function and overstress index related to loading angles and stress state,the anisotropic timedependent fracturing process and propagation of thin-layered rocks under different loading angles and intermediate principal stress are expounded.The model was validated experimentally to show it can reflect the long-term strength and creep deformation characteristics of thin-layered rocks under true triaxial compression.展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded ...Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded periodically by the MTS Landmark Fatigue Testing Machine System. Creep characteristics and creep coefficients of HSHPC under static loading and cyclic loading, respectively, were obtained and compared. The experimental results show that the creep strains under cyclic loading with a mean stress of 0.4 fcp and an amplitude of 0.2 fcp increase significantly compared with the creep strains under static loading, and the maximum value was 1.2-2.3 times at early stages. In addition, the creep coefficient increases nonlinearly with the number of cyclic loading repetitions. The influence coefficient for cyclic loading γcyc=1.088×(N/N0)0.078 was introduced based on the previous HSHPC creep model, and then the modified creep model under cyclic loading was established. Finally, the residual method, the CEB coefficient of variation method and the B3 coefficient of variation method were applied to evaluate the modified creep model. The statistical results demonstrate that the modified creep model agrees well with the experimental measurements. Hence, it has important theoretical and practical values for accurately predicting the deflection of concrete bridges under cyclic traffic loading.展开更多
Polymer-based materials have been motivated to be an alternative support system element in the mining/tunneling industry due to their logistic and geotechnical benefits.Thin spray-on liner(TSL),a term to define the ap...Polymer-based materials have been motivated to be an alternative support system element in the mining/tunneling industry due to their logistic and geotechnical benefits.Thin spray-on liner(TSL),a term to define the application of the material on the rock surface with a layer ranging from 2 mm to10 mm in thickness,shows some promising results.TSLs are mainly composed of plastic,polymer,or cement-based ingredients to a certain proportion.This study intends to reveal the time-dependent response of TSL specimens,cured throughout 500 d,under four constant stress levels for stable laboratory conditions.The results were correlated using two interrelated equations to predict the material’s service life(creep-rupture envelopes).The proposed correlations offered an insight into both the effective permanent support time and the strain amount at the liner failure.The time-dependent deformation of TSL,whose performance is highly responsive to creep behavior,was obtained so that the design engineers may use the findings to avoid the severe problems of material creep.Experimental data were also used to develop a Burgers(four-element)creep model.Since the liner has a nonlinear time-dependent behavior,creep models were built for each stress level separately.Subsequently,a generic equation was obtained using the nonlinear parametric dependencies.There is a good agreement between the proposed model and the experimental results.The proposed model can be used as a basis for future numerical studies related to the support behavior of aged surface support liners.展开更多
The constitutive model Hou/Lux,based on continuum damage mechanics and on the material model Lubby2 is presented and the damage,the healing of damage,the tertiary creep and the creep rupture of rock salt described. An...The constitutive model Hou/Lux,based on continuum damage mechanics and on the material model Lubby2 is presented and the damage,the healing of damage,the tertiary creep and the creep rupture of rock salt described. An application shows how phenomena observed in laboratory tests on axially perforated cylinder sample, such as softening, dilatancy, spalling and radial deformation into the axial bore as well as spalling can be numerically simulated with the model Hou/Lux. Furthermore,it is then evaluated against the measured permeability and stress profiles of a 37-year-old drift at the Sondershausen minein,Germany. Satisfactory agreement is obtained between the calculated and measured data.展开更多
The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctua...The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed,展开更多
The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was establ...The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.展开更多
In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation proce...In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation procedure of creep law parameters are briefly introduced.Besides,a modified shear test is applied to determine the cohesion and friction angle of refractories under shear state. A RH snorkel equipped with magnesia- chromite bricks is chosen for a case study of thermomechanical simulation applying the classical creep model and Drucker-Prager creep model available in the finite element code ABAQUS,respectively. Afterwards,thermal stresses and joint opening of magnesia- chromite bricks during a process cycle are compared to distinguish the impact of these two creep models.展开更多
The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conduct...The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.展开更多
To elucidate the cyclic creep mechanisms in China's impure salt rock after high-temperature damage,cyclic nanoindentation and uniaxial cyclic loading tests were conducted at 25℃,100℃,120℃,and 160℃in this study...To elucidate the cyclic creep mechanisms in China's impure salt rock after high-temperature damage,cyclic nanoindentation and uniaxial cyclic loading tests were conducted at 25℃,100℃,120℃,and 160℃in this study.The results revealed that under cyclic nanoindentation,gypsum mineral exhibited significantly lower indentation depths compared to halite and ankerite minerals,indicating superior resistance to deformation.Additionally,the results demonstrated that high temperature significantly enhances the creep behavior.The maximum indentation depth and creep displacement of minerals,as well as the maximum deformation and creep strain of rock cores,all followed an exponential increase with rising temperatures,with the rate of increase accelerating at higher temperatures.Importantly,it was found that mineral deformation is not the dominant factor in the overall deformation of rock cores;however,the behavior of the mineral phases fundamentally governs the salt rock's mechanical response under stress.Based on these findings,a new constitutive model for cyclic creep was established based on fractional derivatives to accurately characterize the nonlinear cyclic creep characteristics of impure salt rocks at different scales.This model was validated against test data,effectively representing the periodic fluctuations in indentation depth or strain,particularly during the accelerated creep stage.Furthermore,a temperature-dependent correction parameter was introduced,along with a modified Mori-Tanaka method,to upscale microscale results to the macroscale across varying temperatures.This study provides a theoretical foundation for predicting deformation and assessing the stability of salt cavern walls under high-temperature and cyclic loading conditions in deep geological settings.展开更多
Existing creep constitutive models rarely incorporate studies on the coupling mechanism between creep damage and rock strain softening/hardening.This study analyzed the strain softening and hardening behaviors of argi...Existing creep constitutive models rarely incorporate studies on the coupling mechanism between creep damage and rock strain softening/hardening.This study analyzed the strain softening and hardening behaviors of argillaceous sandstone and sandy mudstone during load-induced failure based on the plastic increment theory.These behaviors were then coupled with an improved Burgers creep model to establish a coupled creep-damage and plastic softening/hardening model.Finally,the validity and engineering applicability of the proposed model were verified through FLAC~(3D)numerical simulations.The numerical simulation results of standard cylindrical specimens show that the established coupling model can effectively reflect the unloading creep deformation law and failure characteristics of argillaceous sandstone and sandy mudstone.Taking the diversion tunnel of a hydropower station in Northwest China as an example for engineering application,the coupled creep-damage and plastic softening/hardening model is introduced into FLAC~(3D)to carry out numerical simulation calculation of the tunnel under excavation and unsupported creep conditions.The results show that the uncoordinated deformation of the upper and lower walls of the surrounding rock of the tunnel is more prominent.When the buried depth of the tunnel increases to 80 m,the monitoring point C in the sandy mudstone area of the upper wall shows nonlinear accelerated deformation under unsupported creep conditions,and the maximum displacement in the horizontal direction reaches 44.5 mm,and the maximum displacement in the vertical direction reaches 53.5 mm.The coupled creep-damage and plastic softening/hardening model established in the research results can well describe the whole process of uncoordinated deformation and failure in the unloading creep process of soft-hard interbedded rock mass.展开更多
Creep of sliding zone soils may cause significant displacement in large-scale landslides in the Three Gorges reservoir area.To investigate the effects of water on the soil creep behavior of the Qianjiangping landslide...Creep of sliding zone soils may cause significant displacement in large-scale landslides in the Three Gorges reservoir area.To investigate the effects of water on the soil creep behavior of the Qianjiangping landslide,a series of unsaturated triaxial creep tests on the sliding zone soils were performed.Based on the analyses of testing results,a new stress intensity incorporating matric suction was defined and an unsaturated Singh-Mitchell creep model was developed.Predicted results are in good agreement with the experimental results,which indicates that the established unsaturated model can reasonably simulate the effects of water on the soil creep behavior of the landslide.Finally,relationships between matric suction and the parameters of the model were analyzed.This study provides a calculation model and parameters for the evaluation of long-term stability of landslides under the influence of water.展开更多
During a hypothetical severe accident of light water reactors,the reactor pressure vessel(RPV) could fail due to its creep under the influence of high-temperature corium.Hence,modelling of creep behavior of the RPV is...During a hypothetical severe accident of light water reactors,the reactor pressure vessel(RPV) could fail due to its creep under the influence of high-temperature corium.Hence,modelling of creep behavior of the RPV is paramount to reactor safety analysis since it predicts the transition point of accident progression from in-vessel to ex-vessel phase.In the present study we proposed a new creep model for the classical French RPV steel 16 MND5,which is adapted from the "theta-projection model" and contains all three stages of a creep process.Creep curves are expressed as a function of time with five model parameters θ_i(i=1-4 and m).A model parameter dataset was constructed by fitting experimental creep curves into this function.To correlate the creep curves for different temperatures and stress loads,we directly interpolate the model’s parameters θ_i(i=1-4 and m) from this dataset,in contrast to the conventional "theta-projection model" which employs an extra single correlation for each θ_i(i=1-4 andm),to better accommodate all experimental curves over the wide ranges of temperature and stress loads.We also put a constraint on the trend of the creep strain that it would monotonically increase with temperature and stress load.A good agreement was achieved between each experimental creep curve and corresponding model’s prediction.The widely used time-hardening and strain-hardening models were performing reasonably well in the new method.展开更多
Through-thickness heterogeneity in creep properties of 7B50-T7451 aluminum alloy Friction Stir Welding(FSW)joints was investigated.Creep tests for three slices of the FSW joint were conducted at the temperature of 150...Through-thickness heterogeneity in creep properties of 7B50-T7451 aluminum alloy Friction Stir Welding(FSW)joints was investigated.Creep tests for three slices of the FSW joint were conducted at the temperature of 150-200℃ and applied stress of 60-225 MPa.The theta projection method was used to predict creep curves and minimum creep rate.The results show that the minimum creep rate increases and creep rupture life decreases with the increase of creep temperature and applied stress.Creep properties of the FSW joint deteriorate along the thickness direction from the top to the bottom.The threshold stress of all three slices of the FSW joint decreases with the increase of creep temperature and even disappears at 200℃ for the bottom slice.Creep activation energy approaches the activation energy of the lattice self-diffusion of aluminum.The value of true stress exponent for different slices is approximately equal to three.The predominant creep mechanism of the FSW joint is dislocation viscous glide by lattice self-diffusion.What is more,a constitutive model is established based on the theta method to accurately describe creep behavior ofdifferent slices of the FSW joint.展开更多
T Parallel wire strands(PWSs),which are widely used in prestressed steel structures,are typically in highstress states.Under fire conditions,significant creep effects occur,reducing the prestress and influencing the m...T Parallel wire strands(PWSs),which are widely used in prestressed steel structures,are typically in highstress states.Under fire conditions,significant creep effects occur,reducing the prestress and influencing the mechanical behavior of PWSs.As there is no existing approach to analyze their creep behavior,this study experimentally investigated the elevated temperature creep model of PWSs.A charge-coupled camera system was incorporated to accurately obtain the deformation of the specimen during the elevated temperature creep test.It was concluded that the temperature level had a more significant effect on the creep strain than the stress level,and 450℃ was the key segment point where the creep rate varied significantly.By comparing the elevated temperature creep test results for PWSs and steel strands,it was found that the creep strain of PWSs was lower than that of steel strands at the same temperature and stress levels.The parameters in the general empirical formula,the Bailey–Norton model,and the composite timehardening model were fitted based on the experimental results.By evaluating the accuracy and form of the models,the composite time-hardening model,which can simultaneously consider temperature,stress,and time,is recommended for use in the fire-resistance design of pre-tensioned structures with PWSs.展开更多
基金Supported by the National Natural Science Foundation of China(50874124)the National Basic Research Program of China(973)(2005CB221502)+1 种基金the National Natural Science Foundation of China(50534080)the Natural Science Foundation Project of CQ CSTC(2008BA6028)
文摘Triaxial creep tests on CCG specimens were systematically performed using aself-made creep seepage experimental apparatus for determining the creep law of CCG.An improved triaxial creep model of CCG was established on the basis of a Nishiharamodel and another visco-elasto-plastic model,parameters of which were fitted on test data.Furthermore,the creep model is validated according to the result of triaxial creep experiments,and the outcome shows that the proposed triaxial creep model can properly characterizethe properties of various creep deformation phases of CCG,especially the acceleratingcreep phase.At the same time,the instability conditions of CCG were presentedbased on the discussion of the improved model's stability in terms of stability theories ofdifferential equation solution.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No.52025085)the National Key Research and Development Program of China (Grant No.2021YFB2600900)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province,China (Changsha University of Science and Technology) (Grant No.kfj230606).
文摘Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.
基金This research was financially supported by the Scientific and technological research projects in Sichuan province(Grant Nos.2022YFSY0007 and 2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51878160, 51678145, and52078128)
文摘As the anchoring foundation of the tension leg platform(TLP),suction caisson foundation is subjected to the long-term vertical pullout loads.But there are few studies on the mechanism of the unloading creep of soft clay and long-term uplift bearing capacity of suction caisson foundations.To address this problem,unloading creep tests of soft clay were carried out to analyze the strain development with time under different confining pressures.The test results show that the creep curve rapidly develops in the early stage and tends to stabilize in the later stage.The unloading deviator stress is higher,the unloading creep deformation is greater and the soft clay has typical nonlinear creep characteristics.Therefore,by introducing the creep model and considering the influence of the deviator stress,the stress-dependent Merchant model is proposed to describe the unloading creep of soft clay.Then,the stress-dependent Merchant model is extended to a three-dimension constitutive model,and a finite element subroutine is developed to establish a finite element analysis method for analyzing the long-term uplift capacity of suction caisson foundations and validated with the long-term uplift bearing capacity results of caisson model.
基金supported in part by the National Natural Science Foundation of China (No. 41201064 and No. 41172253)the National Key Basic Research (973) Program of China (Grant No. 2012CB026106)
文摘To model the creep behavior of frozen soils, three creep stages have to be reasonably described (i.e., primary, secondary and tertiary stages). Based on a series of uniaxial creep test results, three creep models were evaluated. It was shown that hypoplastic creep model has high prediction accuracy for both creep strain and strain rate in a wide stress range. The elementary rheological creep model can only be used for creep strains at low stress levels, because of the restraints of its mathematical construction. For the soft soil creep model, the progressive change from the primary to secondary and tertiary stages cannot be captured at high stress levels. Therefore, the elementary rheological and soft soil creep models can only be used for low stress levels without a tertiary stage; while the hypoplastic creep model is applicable at high stress levels with the three creep stages.
基金the financial support from the 111 Project(Grant No.B17009)the Liao Ning Revitalization Talents Program(Grant No.XLYCYSZX1902).
文摘The failure phenomenon of thin-layered rock tunnels not only exhibits asymmetric spatial characteristics,but also significant time-dependent characteristics under high in-situ stress,which is attributed to the time-dependent fracture of thin-layered rocks.This paper conducted a series of true triaxial creep compression tests on typical thin-layered rock siliceous slate with acoustic emission technique to reveal its anisotropic time-dependent fracture characteristics.The anisotropic long-term strength,creep fracturing process,and fracture orientation characteristics of thin-layered rocks under different loading angles(b,u)and intermediate principal stress were summarized.A three-dimensional(3D)non-linear visco-plastic creep model for thin-layered rock was developed to simulate its anisotropic creep behavior.The time-dependent fracturing of rocks during true triaxial creep loading is reflected through the change of equivalent strain based on an improved Euler iteration method.By constructing the plastic potential function and overstress index related to loading angles and stress state,the anisotropic timedependent fracturing process and propagation of thin-layered rocks under different loading angles and intermediate principal stress are expounded.The model was validated experimentally to show it can reflect the long-term strength and creep deformation characteristics of thin-layered rocks under true triaxial compression.
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金Supported by Key Project of Chinese National Programs for Fundamental Research and Development(No.2017YFB 0310105-03)Key Foundation Projects of Hubei Province(No.2016CFA074)Technology Innovation Major Project of Hubei Province(No.2018AAA001-04)
文摘Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded periodically by the MTS Landmark Fatigue Testing Machine System. Creep characteristics and creep coefficients of HSHPC under static loading and cyclic loading, respectively, were obtained and compared. The experimental results show that the creep strains under cyclic loading with a mean stress of 0.4 fcp and an amplitude of 0.2 fcp increase significantly compared with the creep strains under static loading, and the maximum value was 1.2-2.3 times at early stages. In addition, the creep coefficient increases nonlinearly with the number of cyclic loading repetitions. The influence coefficient for cyclic loading γcyc=1.088×(N/N0)0.078 was introduced based on the previous HSHPC creep model, and then the modified creep model under cyclic loading was established. Finally, the residual method, the CEB coefficient of variation method and the B3 coefficient of variation method were applied to evaluate the modified creep model. The statistical results demonstrate that the modified creep model agrees well with the experimental measurements. Hence, it has important theoretical and practical values for accurately predicting the deflection of concrete bridges under cyclic traffic loading.
基金the Scientific and Technological Research Council of Turkey,TUBITAK(Grant No.115M581)for financial support。
文摘Polymer-based materials have been motivated to be an alternative support system element in the mining/tunneling industry due to their logistic and geotechnical benefits.Thin spray-on liner(TSL),a term to define the application of the material on the rock surface with a layer ranging from 2 mm to10 mm in thickness,shows some promising results.TSLs are mainly composed of plastic,polymer,or cement-based ingredients to a certain proportion.This study intends to reveal the time-dependent response of TSL specimens,cured throughout 500 d,under four constant stress levels for stable laboratory conditions.The results were correlated using two interrelated equations to predict the material’s service life(creep-rupture envelopes).The proposed correlations offered an insight into both the effective permanent support time and the strain amount at the liner failure.The time-dependent deformation of TSL,whose performance is highly responsive to creep behavior,was obtained so that the design engineers may use the findings to avoid the severe problems of material creep.Experimental data were also used to develop a Burgers(four-element)creep model.Since the liner has a nonlinear time-dependent behavior,creep models were built for each stress level separately.Subsequently,a generic equation was obtained using the nonlinear parametric dependencies.There is a good agreement between the proposed model and the experimental results.The proposed model can be used as a basis for future numerical studies related to the support behavior of aged surface support liners.
文摘The constitutive model Hou/Lux,based on continuum damage mechanics and on the material model Lubby2 is presented and the damage,the healing of damage,the tertiary creep and the creep rupture of rock salt described. An application shows how phenomena observed in laboratory tests on axially perforated cylinder sample, such as softening, dilatancy, spalling and radial deformation into the axial bore as well as spalling can be numerically simulated with the model Hou/Lux. Furthermore,it is then evaluated against the measured permeability and stress profiles of a 37-year-old drift at the Sondershausen minein,Germany. Satisfactory agreement is obtained between the calculated and measured data.
基金Supported by the National Natural Science Foundation of China (50879044)Master's Degree Thesis Excellent Training Funds of Three Gorges University(2011PY008)
文摘The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed,
基金Project supported by Science&Technology Program of Hubei Traffic and Transport Office,ChinaProject(41272377)supported by the National Natural Science Foundation of China
文摘The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.
基金supported by the Austrian competence centre programme COMET ( Competence Center for Excellent Technologies) with funds from the Federal Ministry for Transport,Innovation and Technology,the Federal Ministry of Economy,the provinces of Upper Austria and Styria,the Styrian Business Promotion Agency,and the Tyrolian Future Foundation
文摘In this paper both experimental and analytical approaches to provide the inputs for creep modeling of refractories including a newly developed high temperature compressive creep machine and an inverse estimation procedure of creep law parameters are briefly introduced.Besides,a modified shear test is applied to determine the cohesion and friction angle of refractories under shear state. A RH snorkel equipped with magnesia- chromite bricks is chosen for a case study of thermomechanical simulation applying the classical creep model and Drucker-Prager creep model available in the finite element code ABAQUS,respectively. Afterwards,thermal stresses and joint opening of magnesia- chromite bricks during a process cycle are compared to distinguish the impact of these two creep models.
基金We gratefully acknowledge the financial support from the Key Laboratory of Geological Safety of Coastal Urban Underground Space,Ministry of Natural Resources(BHKF2022Y03)Shandong Provincial Colleges and Universities Youth Innovation Technology Support Program,Education Department of Shandong Province(grant number 2023KJ092).
文摘The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.
基金supported by the National Natural Science Foundation of China(Grant No.12402488)the China Postdoctoral Science Foundation(Grant No.2023M742898)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(Grant No.GZC20232193).
文摘To elucidate the cyclic creep mechanisms in China's impure salt rock after high-temperature damage,cyclic nanoindentation and uniaxial cyclic loading tests were conducted at 25℃,100℃,120℃,and 160℃in this study.The results revealed that under cyclic nanoindentation,gypsum mineral exhibited significantly lower indentation depths compared to halite and ankerite minerals,indicating superior resistance to deformation.Additionally,the results demonstrated that high temperature significantly enhances the creep behavior.The maximum indentation depth and creep displacement of minerals,as well as the maximum deformation and creep strain of rock cores,all followed an exponential increase with rising temperatures,with the rate of increase accelerating at higher temperatures.Importantly,it was found that mineral deformation is not the dominant factor in the overall deformation of rock cores;however,the behavior of the mineral phases fundamentally governs the salt rock's mechanical response under stress.Based on these findings,a new constitutive model for cyclic creep was established based on fractional derivatives to accurately characterize the nonlinear cyclic creep characteristics of impure salt rocks at different scales.This model was validated against test data,effectively representing the periodic fluctuations in indentation depth or strain,particularly during the accelerated creep stage.Furthermore,a temperature-dependent correction parameter was introduced,along with a modified Mori-Tanaka method,to upscale microscale results to the macroscale across varying temperatures.This study provides a theoretical foundation for predicting deformation and assessing the stability of salt cavern walls under high-temperature and cyclic loading conditions in deep geological settings.
基金funded by the Natural Science Foundation of China(Grant No.U22A20600)。
文摘Existing creep constitutive models rarely incorporate studies on the coupling mechanism between creep damage and rock strain softening/hardening.This study analyzed the strain softening and hardening behaviors of argillaceous sandstone and sandy mudstone during load-induced failure based on the plastic increment theory.These behaviors were then coupled with an improved Burgers creep model to establish a coupled creep-damage and plastic softening/hardening model.Finally,the validity and engineering applicability of the proposed model were verified through FLAC~(3D)numerical simulations.The numerical simulation results of standard cylindrical specimens show that the established coupling model can effectively reflect the unloading creep deformation law and failure characteristics of argillaceous sandstone and sandy mudstone.Taking the diversion tunnel of a hydropower station in Northwest China as an example for engineering application,the coupled creep-damage and plastic softening/hardening model is introduced into FLAC~(3D)to carry out numerical simulation calculation of the tunnel under excavation and unsupported creep conditions.The results show that the uncoordinated deformation of the upper and lower walls of the surrounding rock of the tunnel is more prominent.When the buried depth of the tunnel increases to 80 m,the monitoring point C in the sandy mudstone area of the upper wall shows nonlinear accelerated deformation under unsupported creep conditions,and the maximum displacement in the horizontal direction reaches 44.5 mm,and the maximum displacement in the vertical direction reaches 53.5 mm.The coupled creep-damage and plastic softening/hardening model established in the research results can well describe the whole process of uncoordinated deformation and failure in the unloading creep process of soft-hard interbedded rock mass.
基金Supported by the National Natural Science Foundation of China(50879044,50839004)
文摘Creep of sliding zone soils may cause significant displacement in large-scale landslides in the Three Gorges reservoir area.To investigate the effects of water on the soil creep behavior of the Qianjiangping landslide,a series of unsaturated triaxial creep tests on the sliding zone soils were performed.Based on the analyses of testing results,a new stress intensity incorporating matric suction was defined and an unsaturated Singh-Mitchell creep model was developed.Predicted results are in good agreement with the experimental results,which indicates that the established unsaturated model can reasonably simulate the effects of water on the soil creep behavior of the landslide.Finally,relationships between matric suction and the parameters of the model were analyzed.This study provides a calculation model and parameters for the evaluation of long-term stability of landslides under the influence of water.
基金support from the research programs of APRI,ENSI and NKSsupport of the scholarship awarded by the China Scholarship Council(CSC)。
文摘During a hypothetical severe accident of light water reactors,the reactor pressure vessel(RPV) could fail due to its creep under the influence of high-temperature corium.Hence,modelling of creep behavior of the RPV is paramount to reactor safety analysis since it predicts the transition point of accident progression from in-vessel to ex-vessel phase.In the present study we proposed a new creep model for the classical French RPV steel 16 MND5,which is adapted from the "theta-projection model" and contains all three stages of a creep process.Creep curves are expressed as a function of time with five model parameters θ_i(i=1-4 and m).A model parameter dataset was constructed by fitting experimental creep curves into this function.To correlate the creep curves for different temperatures and stress loads,we directly interpolate the model’s parameters θ_i(i=1-4 and m) from this dataset,in contrast to the conventional "theta-projection model" which employs an extra single correlation for each θ_i(i=1-4 andm),to better accommodate all experimental curves over the wide ranges of temperature and stress loads.We also put a constraint on the trend of the creep strain that it would monotonically increase with temperature and stress load.A good agreement was achieved between each experimental creep curve and corresponding model’s prediction.The widely used time-hardening and strain-hardening models were performing reasonably well in the new method.
基金financially supported by the National Natural Science Foundation of China(No.52075450)the Fundamental Research Funds for the Central Universities,China(No.D5000220503).
文摘Through-thickness heterogeneity in creep properties of 7B50-T7451 aluminum alloy Friction Stir Welding(FSW)joints was investigated.Creep tests for three slices of the FSW joint were conducted at the temperature of 150-200℃ and applied stress of 60-225 MPa.The theta projection method was used to predict creep curves and minimum creep rate.The results show that the minimum creep rate increases and creep rupture life decreases with the increase of creep temperature and applied stress.Creep properties of the FSW joint deteriorate along the thickness direction from the top to the bottom.The threshold stress of all three slices of the FSW joint decreases with the increase of creep temperature and even disappears at 200℃ for the bottom slice.Creep activation energy approaches the activation energy of the lattice self-diffusion of aluminum.The value of true stress exponent for different slices is approximately equal to three.The predominant creep mechanism of the FSW joint is dislocation viscous glide by lattice self-diffusion.What is more,a constitutive model is established based on the theta method to accurately describe creep behavior ofdifferent slices of the FSW joint.
基金support provided by the National Natural Science Foundation of China(Grant No.51878348)the Shanghai Pujiang Program(No.22PJ1414000).
文摘T Parallel wire strands(PWSs),which are widely used in prestressed steel structures,are typically in highstress states.Under fire conditions,significant creep effects occur,reducing the prestress and influencing the mechanical behavior of PWSs.As there is no existing approach to analyze their creep behavior,this study experimentally investigated the elevated temperature creep model of PWSs.A charge-coupled camera system was incorporated to accurately obtain the deformation of the specimen during the elevated temperature creep test.It was concluded that the temperature level had a more significant effect on the creep strain than the stress level,and 450℃ was the key segment point where the creep rate varied significantly.By comparing the elevated temperature creep test results for PWSs and steel strands,it was found that the creep strain of PWSs was lower than that of steel strands at the same temperature and stress levels.The parameters in the general empirical formula,the Bailey–Norton model,and the composite timehardening model were fitted based on the experimental results.By evaluating the accuracy and form of the models,the composite time-hardening model,which can simultaneously consider temperature,stress,and time,is recommended for use in the fire-resistance design of pre-tensioned structures with PWSs.