This paper presents an untethered pneumatic soft robot which can crawl both in horizontal and vertical pipes with different sizes and cross sections.This robot uses modular origami inspired soft-rigid hybrid actuator ...This paper presents an untethered pneumatic soft robot which can crawl both in horizontal and vertical pipes with different sizes and cross sections.This robot uses modular origami inspired soft-rigid hybrid actuator to produce telescoping and anchoring movements powered by vacuum pressure.The introduction of grooves to valley crease significantly lowers the full contraction vacuum pressure and improves the response,allowing the system can be driven by an onboard micro vacuum pump,enabling the possibility of miniaturization,integration,and untethered operation of the robot.A series of crawling experiments in pipes with different sizes and cross sections constructed by acrylic are conducted to validate the crawling performance of the robot.Within square cross-section pipes,the robot can achieve a velocity of 9.4 mm/s in horizontal crawling and 7.7 mm/s in vertical upward crawling.For horizontal crawling in circular pipes,it can reach a velocity of 8.0 mm/s.When fully charged,the robot can crawl for 40 min with a mileage of 16.649 m,which is sufficient for most drainage and industrial pipelines detection tasks.The robot demonstrates excellent endurance and speed performance that exceed most existing untethered soft pipe crawling robots.展开更多
In this study,we present a small,integrated jumping-crawling robot capable of intermittent jumping and self-resetting.Compared to robots with a single mode of locomotion,this multi-modal robot exhibits enhanced obstac...In this study,we present a small,integrated jumping-crawling robot capable of intermittent jumping and self-resetting.Compared to robots with a single mode of locomotion,this multi-modal robot exhibits enhanced obstacle-surmounting capabilities.To achieve this,the robot employs a novel combination of a jumping module and a crawling module.The jumping module features improved energy storage capacity and an active clutch.Within the constraints of structural robustness,the jumping module maximizes the explosive power of the linear spring by utilizing the mechanical advantage of a closed-loop mechanism and controls the energy flow of the jumping module through an active clutch mechanism.Furthermore,inspired by the limb movements of tortoises during crawling and self-righting,a single-degree-of-freedom spatial four-bar crawling mechanism was designed to enable crawling,steering,and resetting functions.To demonstrate its practicality,the integrated jumping-crawling robot was tested in a laboratory environment for functions such as jumping,crawling,self-resetting,and steering.Experimental results confirmed the feasibility of the proposed integrated jumping-crawling robot.展开更多
The data collection and web crawling course has a lot of theoretical knowledge and strong practicality.Traditional teaching methods are no longer sufficient to meet teaching needs.Based on the characteristics of the c...The data collection and web crawling course has a lot of theoretical knowledge and strong practicality.Traditional teaching methods are no longer sufficient to meet teaching needs.Based on the characteristics of the course,this article constructs a mixed teaching environment based on“Learning Pass+Hongya Platform+Offline Course,”integrates teaching resource libraries and ideological and political cases,and develops a suitable evaluation system to cultivate students’innovative and critical thinking abilities,stimulate their learning initiative,improve their teamwork ability,and enhance their professional level and data literacy.展开更多
This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.Th...This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.The transmission is based on the constrained spherical six-bar linkage.The constrained spherical six-bar linkage passes only reciprocating motion out of the motor’s rotating motion,allowing the crawling legs to kick the ground and obtain propulsion.Steering is achieved by adjusting the geometric constraints of the spherical six-bar using a servomotor,allowing the direction of propulsion to be changed.As a result,the OriSCO can move along the ground at a speed of 2.15 body lengths/s,and the robot is 60 mm long.展开更多
Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator...Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator is precurved and a pneumatic source is used to flatten it,requiring no energy cost to maintain the equilibrium curved shape.Pressurizing and depressurizing the actuators generate alternating stretching and bending motions of the actuators,achieving the crawling motion of the robotic crawler.Multi-modal locomotion(crawling,turning,and pipe climbing)is achieved by modular reconfiguration and gait design.An analytical kinematic model is proposed to characterize the quasi-static curvature and step size of a single-module crawler.Multiple configurations of robotic crawlers are fabricated to demonstrate the crawling ability of the proposed design.A set of systematic experiments are set up and conducted to understand how crawler responses vary as a function of FPC prestrains,input pressures,and actuation frequencies.As per the experiments,the maximum carrying load ratio(carrying load divided by robot weight)is found to be 22.32,and the highest crawling velocity is 3.02 body length(BL)per second(392 mm/s).Multi-modal capabilities are demonstrated by reconfiguring three soft crawlers,including a matrix crawler robot crawling in amphibious environments,and an inching crawler turning at an angular velocity of 2/s,as well as earthworm-like crawling robots climbing a 20 inclination slope and pipe.展开更多
A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional ...A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.展开更多
基金supported by National Natural Science Foundation of China under Grant no.52475067.
文摘This paper presents an untethered pneumatic soft robot which can crawl both in horizontal and vertical pipes with different sizes and cross sections.This robot uses modular origami inspired soft-rigid hybrid actuator to produce telescoping and anchoring movements powered by vacuum pressure.The introduction of grooves to valley crease significantly lowers the full contraction vacuum pressure and improves the response,allowing the system can be driven by an onboard micro vacuum pump,enabling the possibility of miniaturization,integration,and untethered operation of the robot.A series of crawling experiments in pipes with different sizes and cross sections constructed by acrylic are conducted to validate the crawling performance of the robot.Within square cross-section pipes,the robot can achieve a velocity of 9.4 mm/s in horizontal crawling and 7.7 mm/s in vertical upward crawling.For horizontal crawling in circular pipes,it can reach a velocity of 8.0 mm/s.When fully charged,the robot can crawl for 40 min with a mileage of 16.649 m,which is sufficient for most drainage and industrial pipelines detection tasks.The robot demonstrates excellent endurance and speed performance that exceed most existing untethered soft pipe crawling robots.
基金supported by the National Natural Science Foundation of China(Nos.51375383).
文摘In this study,we present a small,integrated jumping-crawling robot capable of intermittent jumping and self-resetting.Compared to robots with a single mode of locomotion,this multi-modal robot exhibits enhanced obstacle-surmounting capabilities.To achieve this,the robot employs a novel combination of a jumping module and a crawling module.The jumping module features improved energy storage capacity and an active clutch.Within the constraints of structural robustness,the jumping module maximizes the explosive power of the linear spring by utilizing the mechanical advantage of a closed-loop mechanism and controls the energy flow of the jumping module through an active clutch mechanism.Furthermore,inspired by the limb movements of tortoises during crawling and self-righting,a single-degree-of-freedom spatial four-bar crawling mechanism was designed to enable crawling,steering,and resetting functions.To demonstrate its practicality,the integrated jumping-crawling robot was tested in a laboratory environment for functions such as jumping,crawling,self-resetting,and steering.Experimental results confirmed the feasibility of the proposed integrated jumping-crawling robot.
基金supported by the Quality Engineering Project of Guangdong University of Science and Technology under Grant GKZLGC2024160。
文摘The data collection and web crawling course has a lot of theoretical knowledge and strong practicality.Traditional teaching methods are no longer sufficient to meet teaching needs.Based on the characteristics of the course,this article constructs a mixed teaching environment based on“Learning Pass+Hongya Platform+Offline Course,”integrates teaching resource libraries and ideological and political cases,and develops a suitable evaluation system to cultivate students’innovative and critical thinking abilities,stimulate their learning initiative,improve their teamwork ability,and enhance their professional level and data literacy.
基金supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology).
文摘This paper focuses on a newly developed transmission for a milli-scale eight-legged crawling robot called OriSCO.The transmission allows intuitive steering by directly changing the direction of the propulsion force.The transmission is based on the constrained spherical six-bar linkage.The constrained spherical six-bar linkage passes only reciprocating motion out of the motor’s rotating motion,allowing the crawling legs to kick the ground and obtain propulsion.Steering is achieved by adjusting the geometric constraints of the spherical six-bar using a servomotor,allowing the direction of propulsion to be changed.As a result,the OriSCO can move along the ground at a speed of 2.15 body lengths/s,and the robot is 60 mm long.
基金supported by the National Natural Science Foundation of China under Grant No.62203174the Guangzhou Municipal Science and Technology Project under Grant No.202201010179.
文摘Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator is precurved and a pneumatic source is used to flatten it,requiring no energy cost to maintain the equilibrium curved shape.Pressurizing and depressurizing the actuators generate alternating stretching and bending motions of the actuators,achieving the crawling motion of the robotic crawler.Multi-modal locomotion(crawling,turning,and pipe climbing)is achieved by modular reconfiguration and gait design.An analytical kinematic model is proposed to characterize the quasi-static curvature and step size of a single-module crawler.Multiple configurations of robotic crawlers are fabricated to demonstrate the crawling ability of the proposed design.A set of systematic experiments are set up and conducted to understand how crawler responses vary as a function of FPC prestrains,input pressures,and actuation frequencies.As per the experiments,the maximum carrying load ratio(carrying load divided by robot weight)is found to be 22.32,and the highest crawling velocity is 3.02 body length(BL)per second(392 mm/s).Multi-modal capabilities are demonstrated by reconfiguring three soft crawlers,including a matrix crawler robot crawling in amphibious environments,and an inching crawler turning at an angular velocity of 2/s,as well as earthworm-like crawling robots climbing a 20 inclination slope and pipe.
基金work is supported by the Fundamental Research Funds for the Central Universities(Grant No.B230205021)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(GrantNo.KYCX22_0592).The financial supports are gratefully acknowl-edged.
文摘A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.