India has four Archean Cratons i.e.Bundelkhand,Bastar,Dharwar and Singhbhum.These four Cratons have a dense network of Archean to Proterozoic dykes cutting across the Archean crust.The systematic Geochronology
The Indian shield comprises a number of Archean–Paleoproterozoic cratonic blocks and predominantly Meso–Neoproterozoic mobile belts with Archean protoliths.All these ancient cratons were thought to be integral parts of
High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA'...High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA's genesis inferred from petrolog- ical and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250-1400℃ and high-pressure of 2.0-5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth's mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important pro- cess to generate the HMAs within crations.展开更多
Comparisons of large igneous provinces(UPs)and black shales from different cratons can provide important constraints on Precambrian paleogeographic reconstructions and a better understanding of the environmental effec...Comparisons of large igneous provinces(UPs)and black shales from different cratons can provide important constraints on Precambrian paleogeographic reconstructions and a better understanding of the environmental effects of large-scale volcanic events.A comparison of intraplate mafic events mostly interpreted as LIPs or portions of LIPs(LIP fragments/remnants due to continental breakup or erosion)from the North China Craton(NCC)and North Australian Craton(NAC)shows good correlation in the age range from 1800 Ma to 1300 Ma,and four robust age matches at ca.1790-1770 Ma,ca.1730 Ma,ca.1680-1670 Ma and ca.1320 Ma have been identified.Most notably,the coeval ca.1320 Ma Yanliao LIP in the eastern-northern NCC and the Derim Derim-Galiwinku LIP in the NAC are also characterized by similar field occurences and dominantly subalkaline tholeiitic basalts and intraplate geochemical compositions,and are interpreted as portions of the same LIP,separated by continental breakup.Subsequent to 1300 Ma,the NCC and NAC exhibit very different magmatic histories,indicating that separation of these two cratons occurred,likely subsequent to the ca.1320 Ma LIP event.A comparison of Paleo-Mesoproterozoic black shales from the NCC and NAC provides further evidence for close connections between these regions during this period.Black shales of the Chuanlianggou Formation in the northern NCC and the Cuizhuang Formation in the southern NCC were deposited in the age range ca.1650-1635 Ma and can be correlated with ca.1640-1635 Ma black shales in the Barney Creek Formation of the NAC.Deposition of black shales within the Xiamaling Formation in the NCC and the Velkerri and Kyalla formations of the McArthur Basin in the NAC occurred synchronously at ca.1380-1360 Ma.Our results from matching of LIP ages and black shales combined with paleomagnetic data show that the northern-northeastern margin of the NCC was connected to the northern margin of the NAC from ca.1800 Ma to 1300 Ma.This long-lived late Paleoproterozoic to mid-Mesoproterozoic connection lasted for at least 500 million years until separation of the NCC from the NAC between ca.1320 and ca.1230-1220 Ma.展开更多
Cratons formed due to the specific melting regime of the primitive mantle with elevated mantle temperature during Archean.However,each craton has undergone a distinct evolution history,and some have lost their stabili...Cratons formed due to the specific melting regime of the primitive mantle with elevated mantle temperature during Archean.However,each craton has undergone a distinct evolution history,and some have lost their stability.To investigate to what degree cratons in comparison with one another have been modified from their analogous initial form,we employed Sn-Pn differential(PSn) traveltimes to derive Vp/Vsratio,which is thought to be related to Mg# of the uppermantle.We assessed Pn,Sn,and PSn data using three datasets based on epicentral distance:(1) 2°–12°,(2) 2°–7°,and(3) 7°–12°.The results suggest that most cratons show comparable seismic properties with high velocities and low Vp/Vsratio,implying a highly depleted uppermost mantle that resembles the original residue from the partial melt extraction of the primitive mantle during the Archean.Conversely,the Eastern North China Craton(ENCC) displays the lowest P-and S-wave velocities,and noticeable high Vp/Vsratios in all datasets,implying a systematic difference with other cratons.This observation suggests a scenario of total removal of the depleted Archean mantle lithosphere beneath the ENCC.In contrast,the Ordos Block located at the western part of the North China Craton(WNCC) shows velocities and Vp/Vsratio comparable with those of the typical cratons,suggesting that it has still maintained its Archean mantle lithosphere.The Wyoming Craton has a high Vp/Vsratio similar to that of the ENCC and a high Pwave velocity comparable to that of the typical cratons.These features suggest that the Archean mantle lithosphere has been significantly modified rather than totally removed and replaced by a younger fertile mantle.The Indian Craton presents a low Vp/Vsratio and comparatively high velocities at shallow parts of the mantle lithosphere but a high Vp/Vsratio at deeper parts similar to that of the ENCC,suggesting a partial modification of the Indian Craton at deeper parts.展开更多
East Asian continental tectonics challenges the plate tectonics paradigm with its diffuse intraplate deformation,magmatism,and earthquakes.Despite extensive studies,fundamental questions persist.This review examines t...East Asian continental tectonics challenges the plate tectonics paradigm with its diffuse intraplate deformation,magmatism,and earthquakes.Despite extensive studies,fundamental questions persist.This review examines ten critical questions of East Asian tectonics,including the thickness of the continental lithosphere,the origin of the North–South Gravity Lineament,and the northern extent of the Indian plate beneath the Tibetan Plateau.Additional questions address the Tibetan Plateau's lateral growth,the Tianshan mountain building,the mantle flow in response to the Indo-Asian collision,and the formation of the Shanxi Rift.The review also explores the subduction along the eastern margins of the East Asian Continent and the origins of the Changbaishan volcanic field,the destruction of the North China Craton,and the development of the Mesozoic Large Granitic Province in South China.Originally presented at the DEEP2024 workshop to stimulate discussion of how SinoProbe-II research initiatives could advance our understanding of Asian tectonics,this review provides context for each question,summarizes current knowledge,and identifies promising research directions.展开更多
The North China Craton(NCC)experienced significant lithospheric thinning of over 100 km during the Mesozoic,accompanied by extensive magmatic activity and extensional tectonics.However,the timing and mechanism of this...The North China Craton(NCC)experienced significant lithospheric thinning of over 100 km during the Mesozoic,accompanied by extensive magmatic activity and extensional tectonics.However,the timing and mechanism of this thinning remain the subjects of debate.This study presents zircon U-Pb ages,Hf isotopic data and whole-rock elemental and Sr-Nd isotopic compositions of the Guanshui monzonites and diorites in the eastern NCC.Zircon U-Pb dating reveals that both rock types formed at ca.130 Ma.The monzonites,characterized by high Mg^(#)(50.9-57.9),low Nb/U ratios(2.53-3.89)and depleted isotopic compositions,suggest derivation from asthenospheric mantle modified by slab-derived fluids.The diorites,distinguished by low SiO_(2)(49.5-50.8),high Mg^(#)(66.7-68.5)and an EM2-type enriched mantle isotopic signature,point to a lithospheric mantle source modified by subducted sediment melts.The coexistence of monzonites and diorites suggests a transition in magma source from lithospheric to asthenospheric mantle,implying that lithospheric thinning may have commenced around 130 Ma.The destruction of the NCC was likely driven by localized,small-scale drip-style detachment processes,rather than wholesale lithospheric removal.展开更多
Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric ma...Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.展开更多
How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deform...How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deformation structures in the east Asian continent,however,provide excellent opportunities for reconstructing paleostress fields in continental interior in relation to the Paleo-Pacific/Eurasian plate interaction.Anisotropy of magnetic susceptibility(AMS),geological,and geochronological analyses of post-kinematic mafic dykes intruding the detachment fault zone of the Wulian metamorphic core complex(WL MCC)in Jiaodong Peninsula exemplify emplacement of mantle-sourced dykes in a WNW-ESE(301°-121°)oriented tectonic extensional setting at ca.120 Ma.In combination with the results from our previous kinematic analysis of the MCC,a ca.21°clockwise change in the direction of intraplate extension is obtained for early(135-122 Ma)extensional exhumation of the MCC to late(122-108 Ma)emplacement of the dykes.Such a change is suggested to be related to the variation in subduction direction of the Paleo-Pacific plate beneath the Eurasian plate,from westward(pre-122 Ma)to west-northwestward(post-122 Ma).展开更多
The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is si...The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic.展开更多
The Dharwar Craton(DC)in India consists of three distinct Archean blocks.Previous research suggests that the Central Dharwar Block(CDB)experienced a geological history(3.3-2.5 Ga)comparable to the Western Dharwar Crat...The Dharwar Craton(DC)in India consists of three distinct Archean blocks.Previous research suggests that the Central Dharwar Block(CDB)experienced a geological history(3.3-2.5 Ga)comparable to the Western Dharwar Craton(WDC).However,3.0-2.7 Ga geological records are missed in the CDB.This study identified the 2.85 Ga gabbroic xenoliths within the Closepet batholith in the CDB.The~2.85 Ga inherited zircons and zircon Hf model ages in CDB further provide evidence for this significant magmatic event.The gabbroic xenoliths are characterized by E-MORB REE patterns and Nb,Ta,and Ti depletions,together with high radiogenic isotopic signatures,including zircon Hf(ε_(Hf)(t)_(min)=-3.2),whole-rock Nd(ε_(Nd)(t)=-0.8-0.7),and Pb isotopes(κ=4.9-7.9),indicating derivation from a slightly enriched mantle source.Additionally,they have high Nb(4.41 to 4.73 ppm),low Ti/V(23.4 to 22.5),and elevated Th/Yb(0.38 to 0.61).All these suggest a subduction-related back-arc basin setting.Coupled with widespread early Neoarchean subduction-related igneous rocks in the DC,the 2.85 Ga gabbroic magmatism signifies that the DC had transitioned into a tectonic stage dominated by lateral movement of continental blocks around 2.85 Ga,corresponding to global~2.85 Ga magmatic events.展开更多
Detrital zircon and apatite U-Pb-Hf isotope and trace element analyses of the late Mesoproterozoic to early Neoproterozoic strata in southern Jilin provide detailed information on the sediment provenance and tectonic ...Detrital zircon and apatite U-Pb-Hf isotope and trace element analyses of the late Mesoproterozoic to early Neoproterozoic strata in southern Jilin provide detailed information on the sediment provenance and tectonic setting of the northeastern margin of the North China Craton(NCC).Here,we present U-Pb and Lu-Hf analyses of 712 detrital zircons,and U-Pb analyses of 347 detrital apatites from the Baifangzi,Diaoyutai and Qiaotou formations.The Baifangzi and Diaoyutai formations are dominated by Neoarchean(2.5-2.6 Ga)and Paleoproterozoic(1.8-1.9 Ga)zircons,indicating a predominant NCC provenance.The Qiaotou Formation is dominated by Mesoproterozoic(1.5-1.7 Ga and 1.1-1.3 Ga)zircons with mainly positiveεHf(t)values,which are similar to those from eastern Laurentia,implying a significant provenance transition.The detrital apatite age spectra of the Baifangzi and Diaoyutai Formations show major populations at 1.8-1.9 Ga and 1.1-1.3 Ga.Based on their trace element compositions,the Mesoproterozoic apatites were mainly sourced from metamorphic rocks,indicating regional metamorphism occurred in the NCC during 1.1-1.3 Ga.Combining these data with regional studies,we propose that the NCC was adjacent to eastern Laurentia during the assembly of the Rodinia supercontinent.展开更多
Background The Bundelkhand Craton is significant for preserving the multiphase granitoids magmatism from Paleoarchean to Neoarchean periods.It consists of a variety of granite rocks,including TTGs,sanukitoids,and high...Background The Bundelkhand Craton is significant for preserving the multiphase granitoids magmatism from Paleoarchean to Neoarchean periods.It consists of a variety of granite rocks,including TTGs,sanukitoids,and high-K granitoids.This study presents geochemical characteristics of high-silica(68.97 wt.%–73.99 wt.%),low-silica(58.73wt.%–69.94 wt.%),and high K_(2)O(2.77 wt.%–6.16 wt.%)contents of granitoids.Objective The data on Bundelkhand Craton’s granitic magmatism and geodynamics is not sufficiently robust.Geochemical data from this study will be used to further understand the origin,source,and petrogenesis of granitoid rocks and their implications for the evolution of geodynamics.Methodology Twenty-one samples were collected and analyzed for major,trace,and REE elements.Major elements were measured using X-ray fluorescence spectrometry(XRF),and trace and REE elements were analyzed by ICP-MS.Standard procedures from the Geological Survey of India were followed.Results The geochemical analysis presents high-silica(68.97-73.99 wt.%),low-silica(58.73-69.94 wt.%),and high K_(2)O(2.77-6.16 wt.%)contents in granitoids,classified as granite-granodiorite.The rocks are calcic to calcalkalic,magnesian,and range from peraluminous to metaluminous composition.REE patterns showed strong LREE enrichment relative to HREEs,with prominent negative Eu anomalies corresponding to earlier plagioclase fractionation.Multi-element patterns revealed negative anomalies in Nb,Sr,P,and Ti and positive anomalies in Pb.Conclusion The geochemical signatures attributed to the post-collisional magma generation and continental crustal contamination.The studied rocks show A-type and A2-type lineage,suggesting they originated from the melting of continental crust during transitional/post-collisional tectonic activity.The formation of hybrid granitoids in the Bundelkhand Craton is connected to the fractionation of hybrid magmas in shallow-seated magma chambers during these tectonic processes.展开更多
Based on Moho and Curie depth,heat flow,and upper mantle S-wave velocity anomaly,we infer the thermo-chemical structure of the lithospheres in Africa and surrounding oceans.The Moho depth is derived from gravity anoma...Based on Moho and Curie depth,heat flow,and upper mantle S-wave velocity anomaly,we infer the thermo-chemical structure of the lithospheres in Africa and surrounding oceans.The Moho depth is derived from gravity anomaly using the Parker-Oldenburg method,with constraints from seismic Moho.Crustal stratification defined by Curie-Moho depth difference shows that thermal and strong compositional processes may have shaped the lithospheric architecture of the African continental plate.Moho and Curie depths indicate the southern and eastern African cratons have thermochemical structures different from the West African Craton.Large Curie-Moho depth difference in southern and eastern Africa aligns with the low velocity anomaly originated from the core-mantle boundary.Mantle upwelling from the African low-velocity anomaly presumably induced partial melting at great depth,and the release of mineral-rich fluid and large amounts of volatile components facilitates a regional metasomatism,and results in a depleted,predominantly felsic,low-density paramagnetic crust.Mantle xenolith in kimberlites and volcanic rocks supports metasomatism by melts transmitted through narrow conduits as an intermittent or continuous upward flux of mineral-rich fluid.Alignment of the Curie-Moho depth difference at the intra-plate volcanic province correlates with weak lithospheric strength along the corridor connecting the intra-plate volcanic province with the Ethiopian plateau,suggesting a pathway for thermochemical asthenospheric flow.Crustal stratification and compositional-driven density layering support crustal buoyancy and uplift in the Hoggar,and southern and eastern Africa.A magnetized uppermost mantle is prevalent in the entire oceanic region,except at large igneous provinces(LIPs),volcanic seamounts,and oceanic plateaus,which have partial paramagnetic crusts.Our results support thermochemical upwelling related to the low velocity anomaly beneath the African plate.展开更多
The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history...The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history of the Earth.Detailed petrography,mineral chemistry,metamorphic evolution and zircon U-Pb dating are presented for felsic granulite and two-pyroxene granulite from the Yishui complex to contribute to new insights into the Neoarchean tectonic evolution of the North China Craton.Three mineral assemblages are recognized for these granulite samples,including the prograde(M1),peak(M2)and retrograde(M3)mineral assemblages.Conventional geothermobarometry and phase equilibrium modeling yield P-T conditions of 6.5-10.9 kbar/718-839℃ for the peak metamorphism,which define a medium-pressure granulite-facies metamorphism occurred at middle to lower crust.Anticlockwise P-T paths with near-isobaric cooling(IBC)retrograde segments were reconstructed.Zircon LA-ICP-MS U-Pb dating suggests that the protolith of the felsic granulite was emplaced at 2541±7 Ma and the subsequent medium-pressure granulite-facies metamorphism occurred at 2518-2494 Ma.A two-stage mantle plume related crustal-scale sagduction geodynamic regime is proposed in the western Shandong terrane in the Neoarchean.展开更多
Zircon U-Pb ages,major and trace elements and Sr-Nd-Hf isotope data of the diabase in the Zhangjiakou District were studied to investigate its derivation and tectonic implications.Zircon U-Pb ages indicate that the di...Zircon U-Pb ages,major and trace elements and Sr-Nd-Hf isotope data of the diabase in the Zhangjiakou District were studied to investigate its derivation and tectonic implications.Zircon U-Pb ages indicate that the diabase was emplaced at∼130 Ma or younger,and captured zircons cluster at∼147,∼240,∼430 and∼465 Ma.The diabase is characterized by minor variations in SiO_(2)(49.35 wt.%–52.10 wt.%),TiO_(2)(1.65 wt.%–1.77 wt.%),Al_(2)O_(3)(17.00 wt.%–18.26 wt.%),MgO(4.28 wt.%–4.93 wt.%),CaO(6.69 wt.%–7.90 wt.%)and Mg^(#)(48–54).It has no significant Eu anomaly and displays enrichment in large ion lithophile elements(Rb,Ba and Sr)and depletion in high field strength elements(Nb,Ta,P and Ti).The diabase exhibits homogeneous Sr((^(87)Sr/^(86)Sr)i=0.70606–0.70701)and Nd(ε_(Nd)(t)=−13.6 to−13.2)isotopic compositions.These features suggest that the parental magma was derived from partial melting of the ancient lower crust,relating to mantle upwelling that was triggered by the stagnant slabs or lithospheric detachment associated with the westward subduction of the Paleo-Pacific Plate.The Early Paleozoic inherited igneous zircons in the diabase suggest that the northern margin of the North China Craton(NCC)likely underwent southward subduction of the Paleo-Asian Ocean.展开更多
Based on the detrital zircon U-Pb dating data,this paper discusses the provenance and constructs source-to-sink system of the Upper Jurassic in the North Yellow Sea Basin(NYSB),eastern North China Craton(ENCC).In addi...Based on the detrital zircon U-Pb dating data,this paper discusses the provenance and constructs source-to-sink system of the Upper Jurassic in the North Yellow Sea Basin(NYSB),eastern North China Craton(ENCC).In addition,to avoid the bias of detrital zircon ages caused by variations in zircon fertility,we collected 1709 whole rock zirconium content values(ppm)from granitic rocks with different ages in the North China Craton(NCC).Based on mean Zr content of granitic rocks in each age,these granitic rocks can be divided into four groups:Group A consists of Jurassic,Group B consists of Paleozoic,Neo-Mesoproterozoic and Neoarchean,Group C consists of Early Cretaceous and Triassic,and Group D consists of Paleoproterozoic.This research assigns to these groups zircon fertility factors(ZFF)of 1,1.4,1.8 and 2.2.The U-Pb age of detrital zircons from Late Jurassic sediments corrected by ZFF is statistically analyzed(K-S test,similarity,crosscorrelation,linkeness,and multidimensional scaling).And combining with paleocurrent and paleogeography,we construct two source-to-sink systems:(1)Jiaodong uplift and Sulu Orogenic Belt as the source area and the North Yellow Sea Basin as the sink area;(2)Liaodong Peninsula as the source area and the North Yellow Sea Basin as the sink area.展开更多
The onset of the big mantle wedge(BMW)structure beneath the North China Craton remains debated.Research on the genesis of Late Mesozoic granites associated with gold deposits in the Jiaodong Peninsula above the BMW co...The onset of the big mantle wedge(BMW)structure beneath the North China Craton remains debated.Research on the genesis of Late Mesozoic granites associated with gold deposits in the Jiaodong Peninsula above the BMW could provide fresh insights into this question.The monzogranite from the Zhaoxian-Shaling gold district was intruded during 154-148 Ma.This I-type granite has high-K calc-alkaline and metaluminous characteristics.The monzogranite formed at medium temperatures(718-770℃)and was generated in a thickened lower crust at depths within the stability field of garnet.The monzogranite’s high zircon Ce^(4+)/Ce^(3+)and Eu_(N)/Eu_(N)^(*)values and low FeOT/MgO ratios,suggest that it formed in a high oxygen environment.Its variableε_(Hf)(t)values with T_(DM2)of 1.93-2.87 Ga imply that it originated from the melting of ancient crust basement,with contributions from mantle-derived materials.The granite’s enrichment in LREEs and LILEs,and depletion in HREEs and HFSEs,along with its trace element tectonic discrimination diagrams and medium Sr/Y,indicate an adakite affinity in an active continental margin setting.The transition from S-type granites to I-type granites and finally to A-type granites observed in the eastern part of North China Craton suggests a shift in the tectonic environment from compression to extension.This change is also reflected in the transition from flat subduction to steep subduction.Therefore,the monzogranite was formed in a tectonic transition setting triggered by a change in the subduction angle of the PaleoPacific Ocean slab during the Late Jurassic.This event may have marked the initiation of the BMW above the North China Craton.展开更多
The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically ass...The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.展开更多
Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhu...Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhuang Formation shale samples from the Yanliao Basin in northern China,combined with sedimentary forward modeling,a systematic petrological and organic geochemical study was conducted on the reservoir quality,oil-bearing potential,distribution,and resource potential of the Hongshuizhuang Formation shale in Well Yuanji-2.The results indicate that:(1)The original organic carbon content of the Hongshuizhuang Formation shale averages up to 6.24%,and the original hydrocarbon generation potential is as high as 44.09 mg/g,demonstrating a strong oil generation potential.(2)The rock type is primarily siliceous shale containing low clay mineral content,characterized by the development of shale bedding fractures and organic shrinkage fractures,resulting in good compressibility and reservoir quality.(3)The fifth and fourth members of the Hongshuizhuang Formation serve as shale oil sweet spots,contributing more than 60%of shale oil production with their total thickness as only 40%of the target formation.(4)The Kuancheng-Laozhuanghu area is the most prospective shale oil exploration option in the Yanliao Basin and covers approximately 7200 km^(2).Its original total hydrocarbon generation potential reaches about 74.11 billion tons,with current estimated retained shale oil resources exceeding 1.148 billion tons(lower limit)–comparable to the geological resources of the Permian Lucaogou Formation shale oil in the Jimsar Sag of the Junggar Basin.These findings demonstrate the robust exploration potential of the Hongshuizhuang Formation shale oil in the Yanliao Basin.展开更多
文摘India has four Archean Cratons i.e.Bundelkhand,Bastar,Dharwar and Singhbhum.These four Cratons have a dense network of Archean to Proterozoic dykes cutting across the Archean crust.The systematic Geochronology
文摘The Indian shield comprises a number of Archean–Paleoproterozoic cratonic blocks and predominantly Meso–Neoproterozoic mobile belts with Archean protoliths.All these ancient cratons were thought to be integral parts of
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q08-3-4)the project from the State Key Laboratory for Mineral Deposits Research,Nanjing University(Grant No.15-09-08)
文摘High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA's genesis inferred from petrolog- ical and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250-1400℃ and high-pressure of 2.0-5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth's mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important pro- cess to generate the HMAs within crations.
基金the National Natural Science Foundation of China(Grants No.41725011,41920104004)the National Key Research and Development Project of China(Grant No.2020YFA0714803)+1 种基金REE was partially supported by Russian Mega-Grant(Grant No.14.Y26.31.0012)We are grateful to Darryl Stacey and Shannon Walsh(both NTGS)for help during drill core sample collecting in Darwin,Australia.The manuscript has benefited from thoughtful and constructive reviews by two anonymous reviewers,which significantly improved the quality of our paper.Tim Munson publishes with the permission of the Executive Director,Northern Territory Geological Survey.
文摘Comparisons of large igneous provinces(UPs)and black shales from different cratons can provide important constraints on Precambrian paleogeographic reconstructions and a better understanding of the environmental effects of large-scale volcanic events.A comparison of intraplate mafic events mostly interpreted as LIPs or portions of LIPs(LIP fragments/remnants due to continental breakup or erosion)from the North China Craton(NCC)and North Australian Craton(NAC)shows good correlation in the age range from 1800 Ma to 1300 Ma,and four robust age matches at ca.1790-1770 Ma,ca.1730 Ma,ca.1680-1670 Ma and ca.1320 Ma have been identified.Most notably,the coeval ca.1320 Ma Yanliao LIP in the eastern-northern NCC and the Derim Derim-Galiwinku LIP in the NAC are also characterized by similar field occurences and dominantly subalkaline tholeiitic basalts and intraplate geochemical compositions,and are interpreted as portions of the same LIP,separated by continental breakup.Subsequent to 1300 Ma,the NCC and NAC exhibit very different magmatic histories,indicating that separation of these two cratons occurred,likely subsequent to the ca.1320 Ma LIP event.A comparison of Paleo-Mesoproterozoic black shales from the NCC and NAC provides further evidence for close connections between these regions during this period.Black shales of the Chuanlianggou Formation in the northern NCC and the Cuizhuang Formation in the southern NCC were deposited in the age range ca.1650-1635 Ma and can be correlated with ca.1640-1635 Ma black shales in the Barney Creek Formation of the NAC.Deposition of black shales within the Xiamaling Formation in the NCC and the Velkerri and Kyalla formations of the McArthur Basin in the NAC occurred synchronously at ca.1380-1360 Ma.Our results from matching of LIP ages and black shales combined with paleomagnetic data show that the northern-northeastern margin of the NCC was connected to the northern margin of the NAC from ca.1800 Ma to 1300 Ma.This long-lived late Paleoproterozoic to mid-Mesoproterozoic connection lasted for at least 500 million years until separation of the NCC from the NAC between ca.1320 and ca.1230-1220 Ma.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41630209, U2039203, 42130306)。
文摘Cratons formed due to the specific melting regime of the primitive mantle with elevated mantle temperature during Archean.However,each craton has undergone a distinct evolution history,and some have lost their stability.To investigate to what degree cratons in comparison with one another have been modified from their analogous initial form,we employed Sn-Pn differential(PSn) traveltimes to derive Vp/Vsratio,which is thought to be related to Mg# of the uppermantle.We assessed Pn,Sn,and PSn data using three datasets based on epicentral distance:(1) 2°–12°,(2) 2°–7°,and(3) 7°–12°.The results suggest that most cratons show comparable seismic properties with high velocities and low Vp/Vsratio,implying a highly depleted uppermost mantle that resembles the original residue from the partial melt extraction of the primitive mantle during the Archean.Conversely,the Eastern North China Craton(ENCC) displays the lowest P-and S-wave velocities,and noticeable high Vp/Vsratios in all datasets,implying a systematic difference with other cratons.This observation suggests a scenario of total removal of the depleted Archean mantle lithosphere beneath the ENCC.In contrast,the Ordos Block located at the western part of the North China Craton(WNCC) shows velocities and Vp/Vsratio comparable with those of the typical cratons,suggesting that it has still maintained its Archean mantle lithosphere.The Wyoming Craton has a high Vp/Vsratio similar to that of the ENCC and a high Pwave velocity comparable to that of the typical cratons.These features suggest that the Archean mantle lithosphere has been significantly modified rather than totally removed and replaced by a younger fertile mantle.The Indian Craton presents a low Vp/Vsratio and comparatively high velocities at shallow parts of the mantle lithosphere but a high Vp/Vsratio at deeper parts similar to that of the ENCC,suggesting a partial modification of the Indian Craton at deeper parts.
基金supported by grants from the National Science Foundation of the USA.
文摘East Asian continental tectonics challenges the plate tectonics paradigm with its diffuse intraplate deformation,magmatism,and earthquakes.Despite extensive studies,fundamental questions persist.This review examines ten critical questions of East Asian tectonics,including the thickness of the continental lithosphere,the origin of the North–South Gravity Lineament,and the northern extent of the Indian plate beneath the Tibetan Plateau.Additional questions address the Tibetan Plateau's lateral growth,the Tianshan mountain building,the mantle flow in response to the Indo-Asian collision,and the formation of the Shanxi Rift.The review also explores the subduction along the eastern margins of the East Asian Continent and the origins of the Changbaishan volcanic field,the destruction of the North China Craton,and the development of the Mesozoic Large Granitic Province in South China.Originally presented at the DEEP2024 workshop to stimulate discussion of how SinoProbe-II research initiatives could advance our understanding of Asian tectonics,this review provides context for each question,summarizes current knowledge,and identifies promising research directions.
基金supported by the Jiangsu Innovation and Entrepreneurship Project(JSSCBS20211225).
文摘The North China Craton(NCC)experienced significant lithospheric thinning of over 100 km during the Mesozoic,accompanied by extensive magmatic activity and extensional tectonics.However,the timing and mechanism of this thinning remain the subjects of debate.This study presents zircon U-Pb ages,Hf isotopic data and whole-rock elemental and Sr-Nd isotopic compositions of the Guanshui monzonites and diorites in the eastern NCC.Zircon U-Pb dating reveals that both rock types formed at ca.130 Ma.The monzonites,characterized by high Mg^(#)(50.9-57.9),low Nb/U ratios(2.53-3.89)and depleted isotopic compositions,suggest derivation from asthenospheric mantle modified by slab-derived fluids.The diorites,distinguished by low SiO_(2)(49.5-50.8),high Mg^(#)(66.7-68.5)and an EM2-type enriched mantle isotopic signature,point to a lithospheric mantle source modified by subducted sediment melts.The coexistence of monzonites and diorites suggests a transition in magma source from lithospheric to asthenospheric mantle,implying that lithospheric thinning may have commenced around 130 Ma.The destruction of the NCC was likely driven by localized,small-scale drip-style detachment processes,rather than wholesale lithospheric removal.
基金supported by funds from the Ministry of Science and Technology of the People's Republic of China(No.2019YFA0708603)NSFC(Nos.41973050,42288201,41930215)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0202)。
文摘Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.
基金supported by the National Natural Science Foundation of China(Grant Nos:42130801,41430211,90814006,and 42072226)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,CUGB(Fundamental Research Funds for the Central UniversitiesGrant No:2652023001).
文摘How the subduction direction of the Paleo-Pacific plate beneath the Eurasian plate changes in the Early Cretaceous remains highly controversial due to the disappearance of the subducted oceanic plate.Intraplate deformation structures in the east Asian continent,however,provide excellent opportunities for reconstructing paleostress fields in continental interior in relation to the Paleo-Pacific/Eurasian plate interaction.Anisotropy of magnetic susceptibility(AMS),geological,and geochronological analyses of post-kinematic mafic dykes intruding the detachment fault zone of the Wulian metamorphic core complex(WL MCC)in Jiaodong Peninsula exemplify emplacement of mantle-sourced dykes in a WNW-ESE(301°-121°)oriented tectonic extensional setting at ca.120 Ma.In combination with the results from our previous kinematic analysis of the MCC,a ca.21°clockwise change in the direction of intraplate extension is obtained for early(135-122 Ma)extensional exhumation of the MCC to late(122-108 Ma)emplacement of the dykes.Such a change is suggested to be related to the variation in subduction direction of the Paleo-Pacific plate beneath the Eurasian plate,from westward(pre-122 Ma)to west-northwestward(post-122 Ma).
基金This study was jointly supported by the Science&Technology Fundamental Resources Investigation Program(2022FY101800)National Science Foundation(92162212)+1 种基金the project from the Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences,Wuhan)(TPR-2022-22)the International Geoscience Programme(IGCP-675)。
文摘The Ordos Basin(OB)in the western part of the North China Craton(NCC),was located at the jointed area of multi-plates and has recorded the Mesozoic tectonic characteristics.Its tectonic evolution in the Mesozoic is significant to understand the tectonic transformation of the northern margin of the NCC.In this work,the detrital zircon and apatite(U-Th)/He chronological system were analyzed in the northern part of the OB,and have provided new evidence for the regional tectonic evolution.The(U-Th)/He chronological data states the weighted ages of 240‒235 Ma,141 Ma with the peak distribution of 244 Ma,219 Ma,173 Ma,147‒132 Ma.The thermal evolution,geochronological data,and regional unconformities have proved four stages of regional tectonic evolution for the OB and its surroundings in the Mesozoic:(1)The Late Permian-Early Triassic;(2)the Late Triassic-Early Jurassic;(3)the Late Jurassic-Early Cretaceous;(4)the Late Cretaceous-Early Paleogene.It is indicated that the multi-directional convergence from the surrounding tectonic units has controlled the Mesozoic tectonic evolution of the OB.Four-stage tectonic evolution reflected the activation or end of different plate movements and provided new time constraints for the regional tectonic evolution of the NCC in the Mesozoic.
基金financially supported by the National Natural Science Foundations of China(41890831,41421002)the MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University(201210133)。
文摘The Dharwar Craton(DC)in India consists of three distinct Archean blocks.Previous research suggests that the Central Dharwar Block(CDB)experienced a geological history(3.3-2.5 Ga)comparable to the Western Dharwar Craton(WDC).However,3.0-2.7 Ga geological records are missed in the CDB.This study identified the 2.85 Ga gabbroic xenoliths within the Closepet batholith in the CDB.The~2.85 Ga inherited zircons and zircon Hf model ages in CDB further provide evidence for this significant magmatic event.The gabbroic xenoliths are characterized by E-MORB REE patterns and Nb,Ta,and Ti depletions,together with high radiogenic isotopic signatures,including zircon Hf(ε_(Hf)(t)_(min)=-3.2),whole-rock Nd(ε_(Nd)(t)=-0.8-0.7),and Pb isotopes(κ=4.9-7.9),indicating derivation from a slightly enriched mantle source.Additionally,they have high Nb(4.41 to 4.73 ppm),low Ti/V(23.4 to 22.5),and elevated Th/Yb(0.38 to 0.61).All these suggest a subduction-related back-arc basin setting.Coupled with widespread early Neoarchean subduction-related igneous rocks in the DC,the 2.85 Ga gabbroic magmatism signifies that the DC had transitioned into a tectonic stage dominated by lateral movement of continental blocks around 2.85 Ga,corresponding to global~2.85 Ga magmatic events.
基金financially supported by the National Natural Science Foundation of China(Grant No.41902224,41602209).
文摘Detrital zircon and apatite U-Pb-Hf isotope and trace element analyses of the late Mesoproterozoic to early Neoproterozoic strata in southern Jilin provide detailed information on the sediment provenance and tectonic setting of the northeastern margin of the North China Craton(NCC).Here,we present U-Pb and Lu-Hf analyses of 712 detrital zircons,and U-Pb analyses of 347 detrital apatites from the Baifangzi,Diaoyutai and Qiaotou formations.The Baifangzi and Diaoyutai formations are dominated by Neoarchean(2.5-2.6 Ga)and Paleoproterozoic(1.8-1.9 Ga)zircons,indicating a predominant NCC provenance.The Qiaotou Formation is dominated by Mesoproterozoic(1.5-1.7 Ga and 1.1-1.3 Ga)zircons with mainly positiveεHf(t)values,which are similar to those from eastern Laurentia,implying a significant provenance transition.The detrital apatite age spectra of the Baifangzi and Diaoyutai Formations show major populations at 1.8-1.9 Ga and 1.1-1.3 Ga.Based on their trace element compositions,the Mesoproterozoic apatites were mainly sourced from metamorphic rocks,indicating regional metamorphism occurred in the NCC during 1.1-1.3 Ga.Combining these data with regional studies,we propose that the NCC was adjacent to eastern Laurentia during the assembly of the Rodinia supercontinent.
基金Geological Survey of India,Northern Region have provided the financial funding for the study.
文摘Background The Bundelkhand Craton is significant for preserving the multiphase granitoids magmatism from Paleoarchean to Neoarchean periods.It consists of a variety of granite rocks,including TTGs,sanukitoids,and high-K granitoids.This study presents geochemical characteristics of high-silica(68.97 wt.%–73.99 wt.%),low-silica(58.73wt.%–69.94 wt.%),and high K_(2)O(2.77 wt.%–6.16 wt.%)contents of granitoids.Objective The data on Bundelkhand Craton’s granitic magmatism and geodynamics is not sufficiently robust.Geochemical data from this study will be used to further understand the origin,source,and petrogenesis of granitoid rocks and their implications for the evolution of geodynamics.Methodology Twenty-one samples were collected and analyzed for major,trace,and REE elements.Major elements were measured using X-ray fluorescence spectrometry(XRF),and trace and REE elements were analyzed by ICP-MS.Standard procedures from the Geological Survey of India were followed.Results The geochemical analysis presents high-silica(68.97-73.99 wt.%),low-silica(58.73-69.94 wt.%),and high K_(2)O(2.77-6.16 wt.%)contents in granitoids,classified as granite-granodiorite.The rocks are calcic to calcalkalic,magnesian,and range from peraluminous to metaluminous composition.REE patterns showed strong LREE enrichment relative to HREEs,with prominent negative Eu anomalies corresponding to earlier plagioclase fractionation.Multi-element patterns revealed negative anomalies in Nb,Sr,P,and Ti and positive anomalies in Pb.Conclusion The geochemical signatures attributed to the post-collisional magma generation and continental crustal contamination.The studied rocks show A-type and A2-type lineage,suggesting they originated from the melting of continental crust during transitional/post-collisional tectonic activity.The formation of hybrid granitoids in the Bundelkhand Craton is connected to the fractionation of hybrid magmas in shallow-seated magma chambers during these tectonic processes.
基金Supported by the National Natural Science Foundation of China(Nos.91858213,41776057,41761134051)part of the PhD work of O J AKINRINADE and the National Key Research and Development Program of China(Nos.2023 YFF 0803400,2023 YFF 0803404)。
文摘Based on Moho and Curie depth,heat flow,and upper mantle S-wave velocity anomaly,we infer the thermo-chemical structure of the lithospheres in Africa and surrounding oceans.The Moho depth is derived from gravity anomaly using the Parker-Oldenburg method,with constraints from seismic Moho.Crustal stratification defined by Curie-Moho depth difference shows that thermal and strong compositional processes may have shaped the lithospheric architecture of the African continental plate.Moho and Curie depths indicate the southern and eastern African cratons have thermochemical structures different from the West African Craton.Large Curie-Moho depth difference in southern and eastern Africa aligns with the low velocity anomaly originated from the core-mantle boundary.Mantle upwelling from the African low-velocity anomaly presumably induced partial melting at great depth,and the release of mineral-rich fluid and large amounts of volatile components facilitates a regional metasomatism,and results in a depleted,predominantly felsic,low-density paramagnetic crust.Mantle xenolith in kimberlites and volcanic rocks supports metasomatism by melts transmitted through narrow conduits as an intermittent or continuous upward flux of mineral-rich fluid.Alignment of the Curie-Moho depth difference at the intra-plate volcanic province correlates with weak lithospheric strength along the corridor connecting the intra-plate volcanic province with the Ethiopian plateau,suggesting a pathway for thermochemical asthenospheric flow.Crustal stratification and compositional-driven density layering support crustal buoyancy and uplift in the Hoggar,and southern and eastern Africa.A magnetized uppermost mantle is prevalent in the entire oceanic region,except at large igneous provinces(LIPs),volcanic seamounts,and oceanic plateaus,which have partial paramagnetic crusts.Our results support thermochemical upwelling related to the low velocity anomaly beneath the African plate.
基金supported by the Natural Science Foundation of Shandong Provence(Grant No.ZR2023MD058)National Natural Science Foundation of China(Grant Nos.42072219,41802201)。
文摘The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history of the Earth.Detailed petrography,mineral chemistry,metamorphic evolution and zircon U-Pb dating are presented for felsic granulite and two-pyroxene granulite from the Yishui complex to contribute to new insights into the Neoarchean tectonic evolution of the North China Craton.Three mineral assemblages are recognized for these granulite samples,including the prograde(M1),peak(M2)and retrograde(M3)mineral assemblages.Conventional geothermobarometry and phase equilibrium modeling yield P-T conditions of 6.5-10.9 kbar/718-839℃ for the peak metamorphism,which define a medium-pressure granulite-facies metamorphism occurred at middle to lower crust.Anticlockwise P-T paths with near-isobaric cooling(IBC)retrograde segments were reconstructed.Zircon LA-ICP-MS U-Pb dating suggests that the protolith of the felsic granulite was emplaced at 2541±7 Ma and the subsequent medium-pressure granulite-facies metamorphism occurred at 2518-2494 Ma.A two-stage mantle plume related crustal-scale sagduction geodynamic regime is proposed in the western Shandong terrane in the Neoarchean.
基金supported by the National Natural Science Foundation of China(No.42003032)the State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2020Z10).
文摘Zircon U-Pb ages,major and trace elements and Sr-Nd-Hf isotope data of the diabase in the Zhangjiakou District were studied to investigate its derivation and tectonic implications.Zircon U-Pb ages indicate that the diabase was emplaced at∼130 Ma or younger,and captured zircons cluster at∼147,∼240,∼430 and∼465 Ma.The diabase is characterized by minor variations in SiO_(2)(49.35 wt.%–52.10 wt.%),TiO_(2)(1.65 wt.%–1.77 wt.%),Al_(2)O_(3)(17.00 wt.%–18.26 wt.%),MgO(4.28 wt.%–4.93 wt.%),CaO(6.69 wt.%–7.90 wt.%)and Mg^(#)(48–54).It has no significant Eu anomaly and displays enrichment in large ion lithophile elements(Rb,Ba and Sr)and depletion in high field strength elements(Nb,Ta,P and Ti).The diabase exhibits homogeneous Sr((^(87)Sr/^(86)Sr)i=0.70606–0.70701)and Nd(ε_(Nd)(t)=−13.6 to−13.2)isotopic compositions.These features suggest that the parental magma was derived from partial melting of the ancient lower crust,relating to mantle upwelling that was triggered by the stagnant slabs or lithospheric detachment associated with the westward subduction of the Paleo-Pacific Plate.The Early Paleozoic inherited igneous zircons in the diabase suggest that the northern margin of the North China Craton(NCC)likely underwent southward subduction of the Paleo-Asian Ocean.
基金supported by the National Natural Science Foundation of China(Nos.41872101 and 41790453-4)。
文摘Based on the detrital zircon U-Pb dating data,this paper discusses the provenance and constructs source-to-sink system of the Upper Jurassic in the North Yellow Sea Basin(NYSB),eastern North China Craton(ENCC).In addition,to avoid the bias of detrital zircon ages caused by variations in zircon fertility,we collected 1709 whole rock zirconium content values(ppm)from granitic rocks with different ages in the North China Craton(NCC).Based on mean Zr content of granitic rocks in each age,these granitic rocks can be divided into four groups:Group A consists of Jurassic,Group B consists of Paleozoic,Neo-Mesoproterozoic and Neoarchean,Group C consists of Early Cretaceous and Triassic,and Group D consists of Paleoproterozoic.This research assigns to these groups zircon fertility factors(ZFF)of 1,1.4,1.8 and 2.2.The U-Pb age of detrital zircons from Late Jurassic sediments corrected by ZFF is statistically analyzed(K-S test,similarity,crosscorrelation,linkeness,and multidimensional scaling).And combining with paleocurrent and paleogeography,we construct two source-to-sink systems:(1)Jiaodong uplift and Sulu Orogenic Belt as the source area and the North Yellow Sea Basin as the sink area;(2)Liaodong Peninsula as the source area and the North Yellow Sea Basin as the sink area.
基金supported by the Geological Survey Program of Shandong Province(Yingpeng Wang)Yunnan Fundamental Research Projects(Yongbin Wang)。
文摘The onset of the big mantle wedge(BMW)structure beneath the North China Craton remains debated.Research on the genesis of Late Mesozoic granites associated with gold deposits in the Jiaodong Peninsula above the BMW could provide fresh insights into this question.The monzogranite from the Zhaoxian-Shaling gold district was intruded during 154-148 Ma.This I-type granite has high-K calc-alkaline and metaluminous characteristics.The monzogranite formed at medium temperatures(718-770℃)and was generated in a thickened lower crust at depths within the stability field of garnet.The monzogranite’s high zircon Ce^(4+)/Ce^(3+)and Eu_(N)/Eu_(N)^(*)values and low FeOT/MgO ratios,suggest that it formed in a high oxygen environment.Its variableε_(Hf)(t)values with T_(DM2)of 1.93-2.87 Ga imply that it originated from the melting of ancient crust basement,with contributions from mantle-derived materials.The granite’s enrichment in LREEs and LILEs,and depletion in HREEs and HFSEs,along with its trace element tectonic discrimination diagrams and medium Sr/Y,indicate an adakite affinity in an active continental margin setting.The transition from S-type granites to I-type granites and finally to A-type granites observed in the eastern part of North China Craton suggests a shift in the tectonic environment from compression to extension.This change is also reflected in the transition from flat subduction to steep subduction.Therefore,the monzogranite was formed in a tectonic transition setting triggered by a change in the subduction angle of the PaleoPacific Ocean slab during the Late Jurassic.This event may have marked the initiation of the BMW above the North China Craton.
基金funded by the National Natural Science Foundation of China(42125203,42330809)the 111 project of the Ministry of Science and Technology(BP0719021).
文摘The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.
基金Supported by the National Key R&D Program of China(2022YFF0800304)PetroChina Science and Technology Project(2023ZZ0203)。
文摘Based on large-field rock thin section scanning,high-resolution field emission-scanning electron microscopy(FE-SEM),fluorescence spectroscopy,and rock pyrolysis experiments of the Mesoproterozoic Jixianian Hongshuizhuang Formation shale samples from the Yanliao Basin in northern China,combined with sedimentary forward modeling,a systematic petrological and organic geochemical study was conducted on the reservoir quality,oil-bearing potential,distribution,and resource potential of the Hongshuizhuang Formation shale in Well Yuanji-2.The results indicate that:(1)The original organic carbon content of the Hongshuizhuang Formation shale averages up to 6.24%,and the original hydrocarbon generation potential is as high as 44.09 mg/g,demonstrating a strong oil generation potential.(2)The rock type is primarily siliceous shale containing low clay mineral content,characterized by the development of shale bedding fractures and organic shrinkage fractures,resulting in good compressibility and reservoir quality.(3)The fifth and fourth members of the Hongshuizhuang Formation serve as shale oil sweet spots,contributing more than 60%of shale oil production with their total thickness as only 40%of the target formation.(4)The Kuancheng-Laozhuanghu area is the most prospective shale oil exploration option in the Yanliao Basin and covers approximately 7200 km^(2).Its original total hydrocarbon generation potential reaches about 74.11 billion tons,with current estimated retained shale oil resources exceeding 1.148 billion tons(lower limit)–comparable to the geological resources of the Permian Lucaogou Formation shale oil in the Jimsar Sag of the Junggar Basin.These findings demonstrate the robust exploration potential of the Hongshuizhuang Formation shale oil in the Yanliao Basin.