Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investiga...Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investigated in this paper. In the first place, the assumptions of prior and posterior probability density function (PDF) with quantized innovations in the previous papers are analyzed. After that, an innovative Gaussian mixture estimator is proposed. On this basis, this paper presents a Gaussian mixture state estimation algorithm based on quantized innovations for WSNs. In order to evaluate and compare the performance of this kind of state estimation algo- rithms for WSNs, the posterior Cram6r-Rao lower bound (CRLB) with quantized innovations is put forward. Performance analysis and simulations show that the proposed Gaussian mixture state estimation algorithm is efficient than the others under the same number of quantization levels and the performance of these algorithms can be benchmarked by the theoretical lower bound.展开更多
The mobile channel is slow fading and time selective, thus the multiplicative and additive noise of the channel will smear the spectral line, or arouse Doppler spread. This spread will make the parameters estimation a...The mobile channel is slow fading and time selective, thus the multiplicative and additive noise of the channel will smear the spectral line, or arouse Doppler spread. This spread will make the parameters estimation accuracy degrade. The goal of this paper is to analytically assess this degradation when Carrier Frequency Offset (CFO) and Doppler shift exist jointly. Then the finite-sample Cramer-Rao Lower Bound (CRLB) is derived and close-form asymptotical expression is given for large-sample CRLB. These expressions give insights into the performance room for frequency estimation. Also the variance of Doppler shift estimator is simulated to illustrate the theoretical results.展开更多
The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity functi...The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity function (AF) and the multistatie Cram6r-Rao lower bound (CRLB), the problem of calculating the multistatic AF and the multistatic CRLB as a performance metric for multistatic radar system is studied. Exactly, based on the proper selection of the system parameters, the multistatic radar performance can be significantly improved. The simulation results illustrate that the multistatic AF and the multistatic CRLB can serve as guidelines for future multistatic fusion rule development and multistatic radars deployment.展开更多
现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定...现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。展开更多
This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the unc...This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments.展开更多
With the rapid development of commercial communications,the research on Radar-Communication Coexistence(RCC)systems is becoming a hot spot.The resource allocation techniques play a crucial role in the RCC systems.A pe...With the rapid development of commercial communications,the research on Radar-Communication Coexistence(RCC)systems is becoming a hot spot.The resource allocation techniques play a crucial role in the RCC systems.A performance-driven Joint Radar-target and Communication-user Assignment,along with Power and Subchannel Allocation(JRCAPSA)strategy,is proposed for an RCC network.The optimization model aims to minimize the sum of weighted Bayesian Cramer-Rao Lower Bounds(BCRLBs)of target state estimates for radar purpose.This is subject to constraints such as the Communication Data Rate(CDR)for communication purpose,the total power budget in each RCC system,assignment relationships,and the number of available subchannels.Considering that such a problem falls into the realm of Mixed Integer Programming(MIP),a Three-stage Iteratively Augment-based Optimization Method(TIAOM)is developed.The Communication-User Assignment(CUA),Communication Subchannel Allocation(SCA),and Radar-Target Assignment(RTA)feasible solution domains are iteratively expanded based on their importance,leading to the efficient acquisition of a suboptimal solution.Simulation results show the outperformance of the proposed JRCAPSA strategy,compared to the other benchmarks and the OPTI toolbox.The results also imply that the Bayesian Cramer-Rao Lower Bound(BCRLB)is a more stringent optimization metric for the achieved Mean Square Error(MSE),compared to Mutual Information(MI)and Signal-to-Interference-Noise Ratio(SINR).展开更多
The muitipath signal resolution is reviewed in this paper.The problemsexisted and to be studied are pointed out.Theoretical analysis of the performance ofthe resolution for deterministic signal in the cases where the ...The muitipath signal resolution is reviewed in this paper.The problemsexisted and to be studied are pointed out.Theoretical analysis of the performance ofthe resolution for deterministic signal in the cases where the signal known or unknownis made.Their corresponding Cramer-Rao lower bounds(CRLB)are obtained.展开更多
基金jointly supported by the National Natural Science Foundation of China(No.61175008)State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System of China(No.CEMEE2014K0301A)the Natural Science Foundation of Jiangsu Province of China(No.BK20140896)
文摘Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investigated in this paper. In the first place, the assumptions of prior and posterior probability density function (PDF) with quantized innovations in the previous papers are analyzed. After that, an innovative Gaussian mixture estimator is proposed. On this basis, this paper presents a Gaussian mixture state estimation algorithm based on quantized innovations for WSNs. In order to evaluate and compare the performance of this kind of state estimation algo- rithms for WSNs, the posterior Cram6r-Rao lower bound (CRLB) with quantized innovations is put forward. Performance analysis and simulations show that the proposed Gaussian mixture state estimation algorithm is efficient than the others under the same number of quantization levels and the performance of these algorithms can be benchmarked by the theoretical lower bound.
文摘The mobile channel is slow fading and time selective, thus the multiplicative and additive noise of the channel will smear the spectral line, or arouse Doppler spread. This spread will make the parameters estimation accuracy degrade. The goal of this paper is to analytically assess this degradation when Carrier Frequency Offset (CFO) and Doppler shift exist jointly. Then the finite-sample Cramer-Rao Lower Bound (CRLB) is derived and close-form asymptotical expression is given for large-sample CRLB. These expressions give insights into the performance room for frequency estimation. Also the variance of Doppler shift estimator is simulated to illustrate the theoretical results.
基金Project(61271441)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0895)supported by the Program for New Century Excellent Talents in Universities of China
文摘The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity function (AF) and the multistatie Cram6r-Rao lower bound (CRLB), the problem of calculating the multistatic AF and the multistatic CRLB as a performance metric for multistatic radar system is studied. Exactly, based on the proper selection of the system parameters, the multistatic radar performance can be significantly improved. The simulation results illustrate that the multistatic AF and the multistatic CRLB can serve as guidelines for future multistatic fusion rule development and multistatic radars deployment.
文摘现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。
文摘This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments.
基金supported by the National Natural Science Foundation of China(Nos.62071482,62471485,62471348)Shaanxi Association of Science and Technology Youth Talent Support Program Project,China(No.20230137)+1 种基金Innovative Talents Cultivate Program for Technology Innovation Team of ShaanXi Province,China(No.2024RS-CXTD-08)Youth Talent Lifting Project of the China Association for Science and Technology(No.2021-JCJQ-QT-018)。
文摘With the rapid development of commercial communications,the research on Radar-Communication Coexistence(RCC)systems is becoming a hot spot.The resource allocation techniques play a crucial role in the RCC systems.A performance-driven Joint Radar-target and Communication-user Assignment,along with Power and Subchannel Allocation(JRCAPSA)strategy,is proposed for an RCC network.The optimization model aims to minimize the sum of weighted Bayesian Cramer-Rao Lower Bounds(BCRLBs)of target state estimates for radar purpose.This is subject to constraints such as the Communication Data Rate(CDR)for communication purpose,the total power budget in each RCC system,assignment relationships,and the number of available subchannels.Considering that such a problem falls into the realm of Mixed Integer Programming(MIP),a Three-stage Iteratively Augment-based Optimization Method(TIAOM)is developed.The Communication-User Assignment(CUA),Communication Subchannel Allocation(SCA),and Radar-Target Assignment(RTA)feasible solution domains are iteratively expanded based on their importance,leading to the efficient acquisition of a suboptimal solution.Simulation results show the outperformance of the proposed JRCAPSA strategy,compared to the other benchmarks and the OPTI toolbox.The results also imply that the Bayesian Cramer-Rao Lower Bound(BCRLB)is a more stringent optimization metric for the achieved Mean Square Error(MSE),compared to Mutual Information(MI)and Signal-to-Interference-Noise Ratio(SINR).
文摘The muitipath signal resolution is reviewed in this paper.The problemsexisted and to be studied are pointed out.Theoretical analysis of the performance ofthe resolution for deterministic signal in the cases where the signal known or unknownis made.Their corresponding Cramer-Rao lower bounds(CRLB)are obtained.