The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-...The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian(SrAl2Si2O) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm(3+)-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4 G5/2→6 Hj/2(j=5, 7, 9, 11) transitions ofSm^(3+), respectively. Besides, by increasing the crystallization temperature or the concentration ofSm^(3+), the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that theSm^(3+)-doped SAS glassceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.展开更多
Ce3+/Dy3+/Tb3+/Eu3+/Mn2+and Cr3+ions co-doped Zn3 Al2 Ge2 O10 phosphor were prepared by a hightemperature solid-state method.X-ray diffraction patterns prove the cubic phase structure of prepared Zn3 Al2 Ge2 O10 phosp...Ce3+/Dy3+/Tb3+/Eu3+/Mn2+and Cr3+ions co-doped Zn3 Al2 Ge2 O10 phosphor were prepared by a hightemperature solid-state method.X-ray diffraction patterns prove the cubic phase structure of prepared Zn3 Al2 Ge2 O10 phosphor,Emission,excitation spectra and decay curves confirm the tunable luminescence.Different degrees of the decrease of emission FWHM in Zn3 Al2 Ge2 O10:0.02 Cr3+,RE(RE=Ce3+,Dy3+,Tb3+,Eu3+)and Zn3 Al2 Ge2 O10:0.02 Cr3+,Mn2+are observed.The reason of variable FWHM is the effect of crystal field splitting and nephelauxetic effect,and the nephelauxetic effect is dominant.Therefore,the emission FWHM decreases with the increasing concentration of Mn2+/Tb3+/Eu3+in Zn3 Al2 Ge2 O10:0.02 Cr3+,and for Zn3 Al2 Ge2 O10:0.02 Cr3+,Ce3+and Zn3 Al2 Ge2 O10:0.02 Cr3+,Dy3+,it is a constant.The variation of Zn3 Al2 Ge2 O10:0.02 Cr3+,Tb3+is more obvious than that of Zn3 Al2 Ge2 O10:0.02 Cr3+,Eu3+,because Tb3+ion has smaller electronegativity.Thus,the tunable luminescence of Cr3+can be realized by co-doping different ions.And these phosphors have potential applications in light-emitting diodes for plant growth.展开更多
A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence...A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.展开更多
TiO2 powder and TiO2 thin film on the surface of glazed ceramic tile were prepared by sol-gel method.The influences of different doping Cr3+ concentration on the photocatalytic activity of TiO2 were discussed, UV-visi...TiO2 powder and TiO2 thin film on the surface of glazed ceramic tile were prepared by sol-gel method.The influences of different doping Cr3+ concentration on the photocatalytic activity of TiO2 were discussed, UV-visible and X-ray diffraction analysis were used to test the performance of TiO2 powder and film. The results indicate that photocatalytic activity of doping Cr3+-TiO2 thin film is higher than that of powder, and the interaction between Cr3+-doped and substrate can greatly enhance the photocatalytic activity. The results of X-ray diffraction and photoabsorption show that the Cr3+ -doped energy level in TiO2 is 0. 62 eV high from the top of valence band, which belongs to the type of deep energy level doping. On the basis of the semiconductor energy level theory and Cr3+ dopant energy level, the semiconductor energy level model of Cr3+ in TiO2 powder and thin film were established, and the doping mechanisms of Cr3+-doped in TiO2 powder and thin film were analyzed.展开更多
Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has...Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has fine microstructure whereas that prepared by solid-solid doping has large grain size.Y2O3-doped Mo emitter with small grain size prepared by liquid-liquid doping exhibits high emission property,i.e.,the secondary electron yield can get to 5.24,about 1.7 times that prepared by solid-solid doping.Moreover,Y2O3-doped Mo emitter exhibits the best emission performance among La2O3-doped Mo,Y2O3-doped Mo, Gd2O3-doped Mo and Ce2O3-doped Mo emitters due to the largest penetration depth of primary electrons and escape depth of secondary electrons in this emitter.The secondary emission of the emitter with small grain size can be explained by reflection emission model and transmission emission model,whereas only transmission emission exists in the emitter with large grain size.展开更多
The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel...The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel engines. In this work, V2O5/WO3-TiO2 (VWT) and SiO2- doped V2O5/WO3-TiO2 (VWTSi10)) catalysts were prepared by impregnation method and characterized by Brunauer- Emmett-Teller (BET), X-ray diffraction (XRD), Raman, temperature programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption by ammonia (NH3- TPD). The doping of SiO2 promotes the thermal stability of V2O5/WO3-TiO? for NH3-SCR significantly. After calcination at 650 °C for 50 h, the operation window of 10% SiO2-doped V2O5/WO3-TiO2 is 220-480 °C, while the maximum NOV conversion on V2O5/WO3-TiO2 is about 77%. The presenee of SiO2 obviously blocks the transformation of TiO2 from anatase to rutile and stabilizes the dispersion of VOv and WO3 on the surface. It is available for the existence of V44 and the amount of surface acid sites increases, which inhabits the NH3 oxidation at the high temperature range and promotes NH3-SCR activity.展开更多
The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent...The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent catalysts used at different time,indicated that the main reason of the catalyst deactivation was the deposition of carbonaceous species that covered the active Ni and blocked mesopores of the catalyst.The TPO and SEM measurements revealed that the carbonaceous species included both oligomeric and polymeric species with high C/H ratio and showed sheet.Such carbonaceous species might be eliminated through either direct H2 reduction or the combined oxidation-reduction methodologies.展开更多
基金Funded by the National Natural Science Foundation of China(No.5137217)Hubei Province Foreign Science and Technology Project(No.2016AHB027)Science and Technology Planning Project of Hubei Province(No.2014BAA136)
文摘The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian(SrAl2Si2O) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm(3+)-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4 G5/2→6 Hj/2(j=5, 7, 9, 11) transitions ofSm^(3+), respectively. Besides, by increasing the crystallization temperature or the concentration ofSm^(3+), the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that theSm^(3+)-doped SAS glassceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.
基金Projects supported by the National Natural Science Foundation of China(61575019,11474018,61775013),ChinaThe authors express the thanks to the Fundamental ResearchFunds for the Central Universities under Grant No. 2018YJS166,China and the Fundamental Research Funds for the Central Universitieswith the Grant No. 2016JBM066,No. 2017RC015, No.2017JBZ105, China.
文摘Ce3+/Dy3+/Tb3+/Eu3+/Mn2+and Cr3+ions co-doped Zn3 Al2 Ge2 O10 phosphor were prepared by a hightemperature solid-state method.X-ray diffraction patterns prove the cubic phase structure of prepared Zn3 Al2 Ge2 O10 phosphor,Emission,excitation spectra and decay curves confirm the tunable luminescence.Different degrees of the decrease of emission FWHM in Zn3 Al2 Ge2 O10:0.02 Cr3+,RE(RE=Ce3+,Dy3+,Tb3+,Eu3+)and Zn3 Al2 Ge2 O10:0.02 Cr3+,Mn2+are observed.The reason of variable FWHM is the effect of crystal field splitting and nephelauxetic effect,and the nephelauxetic effect is dominant.Therefore,the emission FWHM decreases with the increasing concentration of Mn2+/Tb3+/Eu3+in Zn3 Al2 Ge2 O10:0.02 Cr3+,and for Zn3 Al2 Ge2 O10:0.02 Cr3+,Ce3+and Zn3 Al2 Ge2 O10:0.02 Cr3+,Dy3+,it is a constant.The variation of Zn3 Al2 Ge2 O10:0.02 Cr3+,Tb3+is more obvious than that of Zn3 Al2 Ge2 O10:0.02 Cr3+,Eu3+,because Tb3+ion has smaller electronegativity.Thus,the tunable luminescence of Cr3+can be realized by co-doping different ions.And these phosphors have potential applications in light-emitting diodes for plant growth.
基金supported by the Education Department of Zhejiang Province (20050359)
文摘A near infrared to visible blue, green, and red upconversion luminescence in a Tb^3+-doped CaO-Al2O3-SiO2 glass was studied, which was excited using 800 nm femtosecond laser irradiation. The upconversion luminescence was attributed to ^5D3→^7F5, ^5D3→^7F4, ^5D3→^7F3, ^5D4→^7F6, ^5D4→^7F5, ^5D4→^7F4, and ^5D4→^7F3 transitions of Tb^3+. The relationship between upconversion luminescence intensity and the pump power indicated that a three-photon simultaneous absorption process was dominant in this upconversion luminescence. The intense red, green, and blue upconversion luminescence of Tb^3+-doped CaO-Al2O3-SiO2 glass may be potentially useful in developing three-dimensional display applications.
基金Project (20466001) supported by the National Natural Science Foundation of China
文摘TiO2 powder and TiO2 thin film on the surface of glazed ceramic tile were prepared by sol-gel method.The influences of different doping Cr3+ concentration on the photocatalytic activity of TiO2 were discussed, UV-visible and X-ray diffraction analysis were used to test the performance of TiO2 powder and film. The results indicate that photocatalytic activity of doping Cr3+-TiO2 thin film is higher than that of powder, and the interaction between Cr3+-doped and substrate can greatly enhance the photocatalytic activity. The results of X-ray diffraction and photoabsorption show that the Cr3+ -doped energy level in TiO2 is 0. 62 eV high from the top of valence band, which belongs to the type of deep energy level doping. On the basis of the semiconductor energy level theory and Cr3+ dopant energy level, the semiconductor energy level model of Cr3+ in TiO2 powder and thin film were established, and the doping mechanisms of Cr3+-doped in TiO2 powder and thin film were analyzed.
基金Projects(2006AA03Z524,2008AA031001)supported by the National Hi-tech Research and Development Program of ChinaProject(50801001)supported by the National Natural Foundation of China
文摘Y2O3-doped Mo secondary emitters were prepared by liquid-liquid doping and solid-solid doping,respectively.The back-scattered scanning observation result indicates that the emitter prepared by liquid-liquid doping has fine microstructure whereas that prepared by solid-solid doping has large grain size.Y2O3-doped Mo emitter with small grain size prepared by liquid-liquid doping exhibits high emission property,i.e.,the secondary electron yield can get to 5.24,about 1.7 times that prepared by solid-solid doping.Moreover,Y2O3-doped Mo emitter exhibits the best emission performance among La2O3-doped Mo,Y2O3-doped Mo, Gd2O3-doped Mo and Ce2O3-doped Mo emitters due to the largest penetration depth of primary electrons and escape depth of secondary electrons in this emitter.The secondary emission of the emitter with small grain size can be explained by reflection emission model and transmission emission model,whereas only transmission emission exists in the emitter with large grain size.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300)the National High Technology Research and Development Program of China (No. 2015AA034603)+2 种基金the National Natural Science Foundation of China (Nos. 21333003 and 21571061)the "Shu Guang" Project of the Shanghai Municipal Education Commission (No. 12SG29)the Commission of Science and Technology of Shanghai Municipality (No. 15DZ1205305)
文摘The selective catalytic reduction of NOV with NH3 (NH3-SCR) is a very effective technology to control the emission of NOA, and the thermal stability of NH3-SCR catalyst is very important for removal of NOV from diesel engines. In this work, V2O5/WO3-TiO2 (VWT) and SiO2- doped V2O5/WO3-TiO2 (VWTSi10)) catalysts were prepared by impregnation method and characterized by Brunauer- Emmett-Teller (BET), X-ray diffraction (XRD), Raman, temperature programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption by ammonia (NH3- TPD). The doping of SiO2 promotes the thermal stability of V2O5/WO3-TiO? for NH3-SCR significantly. After calcination at 650 °C for 50 h, the operation window of 10% SiO2-doped V2O5/WO3-TiO2 is 220-480 °C, while the maximum NOV conversion on V2O5/WO3-TiO2 is about 77%. The presenee of SiO2 obviously blocks the transformation of TiO2 from anatase to rutile and stabilizes the dispersion of VOv and WO3 on the surface. It is available for the existence of V44 and the amount of surface acid sites increases, which inhabits the NH3 oxidation at the high temperature range and promotes NH3-SCR activity.
基金Supported by the National Natural Science Foundation of China(21673132).
文摘The deactivation of Ni/SiO2-Al2 O3 catalyst in hydrogenation of crude 1,4-butanediol was investigated.During the operation time of 2140 h,the catalyst showed slow activity decay.Characterization results,for four spent catalysts used at different time,indicated that the main reason of the catalyst deactivation was the deposition of carbonaceous species that covered the active Ni and blocked mesopores of the catalyst.The TPO and SEM measurements revealed that the carbonaceous species included both oligomeric and polymeric species with high C/H ratio and showed sheet.Such carbonaceous species might be eliminated through either direct H2 reduction or the combined oxidation-reduction methodologies.