The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by ...The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And e...To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that “monosodium glutamate” effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.展开更多
Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, ...Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.展开更多
Pores,microcracks and density of plasma sprayed Cr2O3 coatings before and after high-intensity pulsed ion beam(HIPIB) irradiation were investigated using the ultrasonic reflection coefficient spectroscopy(URCS).The UR...Pores,microcracks and density of plasma sprayed Cr2O3 coatings before and after high-intensity pulsed ion beam(HIPIB) irradiation were investigated using the ultrasonic reflection coefficient spectroscopy(URCS).The URCS was analyzed based on an acoustic transmission model for the multi-layered structure.The longitudinal velocity in the coatings was calculated from the experimental URCS,and the attenuation coefficient expression was deduced by comparing the experimental and numerical fitting amplitude spectral lines.The longitudinal velocity of as-sprayed Cr2O3 coating is 2 002 m/s,and increases to 2 099 and 2 148 m/s after being irradiated by HIPIB with 1 and 5 shots.Correspondingly,the factor A changes from 0.046 to 0.026 and 0.020 and n from 1.702 to 1.658 and 1.649 in the attenuation coefficient expression of α=Af n.It is observed that the surface morphology of Cr2O3 coatings changes from rough and porous to smooth and uniform with the increase of shot number,which accords with the ultrasonic analyses reasonably.The URCS seems to provide a convenient and nondestructive method to characterize surface modification of the plasma sprayed coatings.展开更多
NiCr–Cr3C2 metal–ceramic composite coating is commonly produced on metal substrate by laser cladding to be used as wear-resistant coating under medium- or high-temperature working conditions.The coating has high har...NiCr–Cr3C2 metal–ceramic composite coating is commonly produced on metal substrate by laser cladding to be used as wear-resistant coating under medium- or high-temperature working conditions.The coating has high hardness, generally over three times that of the substrate.In order to make the hardness increase gradually from substrate to coating surface, the nickel-based alloy Ni45 was chosen as the transition layer and Ni Cr–Cr3C2 coating was indirectly cladded on 20Cr2Ni4 A substrate.Microstructure and composition of the coating were characterized by scanning electron microscope(SEM), energy-dispersive spectroscopy(EDS) and X-ray diffraction(XRD).Microhardness of the cross section of the coating was measured.Friction and wear behavior of Ni Cr–Cr3C2coating and substrate were investigated through sliding against the Si C ball at 20, 100 and 300 °C.The morphologies of worn surfaces were analyzed by SEM and EDS.The results show that the hardness of Ni45 transition layer is between that of the substrate and Ni Cr–Cr3C2coating, which avoids hardness jump and stress concentration of the coating.Ni Cr–Cr3C2coating contains hard phases of Cr3C2 and Cr7C3which enhance the wear resistance.With thetemperature increasing, friction coefficient and wear rate of the substrate increase significantly.Compared with the substrate, Ni Cr–Cr3C2coating has lower friction coefficient and wear rate at 100 and 300 °C, which verifies the good wear resistance of NiCr–Cr3C2 coating.展开更多
There has been much interest in developing multilayered or nanolayered physical vapor deposition(PVD) coatings identified as a group of promising protective coatings for their excellent mechanical properties and cor...There has been much interest in developing multilayered or nanolayered physical vapor deposition(PVD) coatings identified as a group of promising protective coatings for their excellent mechanical properties and corrosion resistance. In this study, the multilayered Cr N/Cr2O3 coatings with different bilayer periods(L) were synthesized on the polished high speed steel substrates from a Cr target with the alternative atmosphere of pure nitrogen and pure oxygen by arc ion plating(AIP) technique. The results revealed that the microstructure,morphologies and properties of the multilayered coatings were strongly influenced by the bilayer period(L).There were two kinds of interfaces in the multilayered Cr N/Cr2O3coatings: the sharp ones and the blurry ones. With reducing the value of L, the macro-particles densities decreased gradually, whereas the coating microhardness, adhesive strength and wear resistance first increased, and then decreased slightly or remained stable as the bilayer period L 〈 590 nm. The multilayered Cr N/Cr2O3 coating with the bilayer period L of 590 nm possessed the best comprehensive properties, namely the highest microhardness, the strongest adhesion, and the lowest wear rate.展开更多
V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer...Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.展开更多
Two types of plasma sprayed coatings (NiCrAlY and NiCrAlY-A12O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200-700 W and 5-30 mm/s respectively, t...Two types of plasma sprayed coatings (NiCrAlY and NiCrAlY-A12O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200-700 W and 5-30 mm/s respectively, the melted track grew in width and depth. In the optimum range of laser parameters, a homogeneous remelted layer without voids, cavities, unmelted particles and microcracks was formed. On the surface of remelted layers, Al203 and YAIO3 were detected. As a result of isothermal oxidation tests, weight gains of laser remelted coatings were obviously lower than that only plasma sprayed, especially laser remelted NiCrAlY-Al2O3 coatings. The effects of laser remelting and incorporation of A12O3 second phase in N1CrAlY matrix on high temperature oxidation resistance were discussed.展开更多
In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the micr...In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the microstructural characteristics as well as the mechanical and tribological properties of the CrN/Cr2O3 doublelayered coatings were investigated. The corresponding mechanisms were also discussed. The results indicated that the insertion of CrN layer between the Cr2O3 layer and substrate can effectively decrease the internal stress level of the coating. With increasing the thickness ratio of CrN vs Cr2O3 layer, the surface roughness of double-layered coatings decreased gradually, which had a certain influence on the friction coefficient. In addition, the microhardness also declined gradually, the adhesive strength almost increased linearly, whereas the wear rate declined firstly and then increased slightly. As the thickness ratio was 2:1, the double-layered coating exhibited the best wear resistance.展开更多
The process of electrodepositing Fe-Cr2O3 composite coating on polyacrylonitrile (PAN)-based carbon fibers and its catalytic graphitization were studied. Carbon fibers with and without electrodeposited Fe-Cr2O3 comp...The process of electrodepositing Fe-Cr2O3 composite coating on polyacrylonitrile (PAN)-based carbon fibers and its catalytic graphitization were studied. Carbon fibers with and without electrodeposited Fe-Cr2O3 composite coating were heat treated at different temperatures and the structural changes were characterized by XRD, Raman spectroscopy and SEM. The results indicate that Fe-Cr2O3 composite coating exhibits a significant catalytic effect on graphitization of carbon fibers at low temperatures. When the Fe-Cr2O3-coated carbon fibers were heat treated at 1 300℃ the interlayer spacing (doo2) and ratio of relative peak area (AD/AG) reach 3.364/k and 0.34, respectively. Whereas, the extent of graphitization of pristine carbon fibers is comparatively low even after heat treatment at 2 800℃ and the values of doo2 and AD/AG are 3.414 A and 0.68, respectively. The extent of graphitization of carbon fibers increases not only with the increase of the catalyst gross but also the Cr2O3 content in Fe-Cr2O3 coating. The catalytic effect of Fe-Cr2O3 composite coating accords with the dissolution-precipitation mechanism.展开更多
A new technique-series electro-pulse discharge (SEPD)-was developed as a sur-face coating process. In this technique, both positive and negative poles of a pulse power were used as the depositing electrodes with the s...A new technique-series electro-pulse discharge (SEPD)-was developed as a sur-face coating process. In this technique, both positive and negative poles of a pulse power were used as the depositing electrodes with the substrate alloy as an induction electrode. Fe-Cr and Fe-Cr-Y2O3 micro-crystalline coatings were deposited on stain-less steel (Fe-18Cr-8Ni) surfaces. Oxidation at 950℃ in ambient air showed that the coatings greatly improved the oxidation resistance of the steel. The addition of dis-persed Y2O3 nano-particles into the alloy coatings was found to further reduce the scaling rate and enhance the adhesion of oxide scales.展开更多
A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of ...A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of the Cr3C2 coatings were studied. The contact angle between molten copper and the C/C decreased from 140°to 60°, demonstrating the significant improvement in the wettability. The Cr3C2- coated C/C-Cu composite with only 4.2% porosity and 3.69 gcm^-3 density was manufactured through copper infiltration. As a result, the thermal and electrical conductivity of the modified C/C-Cu increased significantly due to the infiltrated copper. Also the mechanical properties of the composites including both the flexural and compressive strengths were enhanced by over 100%. The modified C/C-Cu composite exhibited lower friction coefficients and wear rates for different load levels than those of the commercial C/Cu composite. These results demonstrate the potential of the modified C/C-Cu material for use in electrical contacts.展开更多
基金Project (51072165) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing,China
文摘The pyrolytic carbon (PyC) coatings were fabricated on A1203 fiber fabrics by the method of chemical vapor deposition (CVD). The microstructures of A1203 fibers with and without PyC coatings were characterized by SEM and Raman spectroscopy. The influence of deposition time of PyC on the DC conductivity (ad) of A1203 filaments and complex permittivity of fabrics at X band (8.2-12.4 GHz) were investigated. The values of Crd and complex permittivity increase with increasing deposition time of PyC. The electron relaxation polarization and conductance loss were supposed to be contributed to the increase of ε' and ε", respectively. In addition, the reflection loss (RL) of fabrics was calculated. The results show that the microwave absorbing properties of Al2O3 fiber fabrics can be improved by PyC coatings. The best RL results are for 60 min-deposition sample, of which the minimum value is about -40.4 dB at about 9.5 GHz and the absorbing frequency band (AFB) is about 4 GHz.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金Project supported by Governor's Foundation of Guizhou Province (2004-07)
文摘To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that “monosodium glutamate” effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.
文摘Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.
基金Project(KM200710015010) supported by the Scientific Research Program of Beijing Municipal Education Commission,China
文摘Pores,microcracks and density of plasma sprayed Cr2O3 coatings before and after high-intensity pulsed ion beam(HIPIB) irradiation were investigated using the ultrasonic reflection coefficient spectroscopy(URCS).The URCS was analyzed based on an acoustic transmission model for the multi-layered structure.The longitudinal velocity in the coatings was calculated from the experimental URCS,and the attenuation coefficient expression was deduced by comparing the experimental and numerical fitting amplitude spectral lines.The longitudinal velocity of as-sprayed Cr2O3 coating is 2 002 m/s,and increases to 2 099 and 2 148 m/s after being irradiated by HIPIB with 1 and 5 shots.Correspondingly,the factor A changes from 0.046 to 0.026 and 0.020 and n from 1.702 to 1.658 and 1.649 in the attenuation coefficient expression of α=Af n.It is observed that the surface morphology of Cr2O3 coatings changes from rough and porous to smooth and uniform with the increase of shot number,which accords with the ultrasonic analyses reasonably.The URCS seems to provide a convenient and nondestructive method to characterize surface modification of the plasma sprayed coatings.
基金financially supported by the National Natural Science Foundation of China (No. 51275020)the National Defense Pre-Research Foundation of China (No. 9140A18020212HK01210)
文摘NiCr–Cr3C2 metal–ceramic composite coating is commonly produced on metal substrate by laser cladding to be used as wear-resistant coating under medium- or high-temperature working conditions.The coating has high hardness, generally over three times that of the substrate.In order to make the hardness increase gradually from substrate to coating surface, the nickel-based alloy Ni45 was chosen as the transition layer and Ni Cr–Cr3C2 coating was indirectly cladded on 20Cr2Ni4 A substrate.Microstructure and composition of the coating were characterized by scanning electron microscope(SEM), energy-dispersive spectroscopy(EDS) and X-ray diffraction(XRD).Microhardness of the cross section of the coating was measured.Friction and wear behavior of Ni Cr–Cr3C2coating and substrate were investigated through sliding against the Si C ball at 20, 100 and 300 °C.The morphologies of worn surfaces were analyzed by SEM and EDS.The results show that the hardness of Ni45 transition layer is between that of the substrate and Ni Cr–Cr3C2coating, which avoids hardness jump and stress concentration of the coating.Ni Cr–Cr3C2coating contains hard phases of Cr3C2 and Cr7C3which enhance the wear resistance.With thetemperature increasing, friction coefficient and wear rate of the substrate increase significantly.Compared with the substrate, Ni Cr–Cr3C2coating has lower friction coefficient and wear rate at 100 and 300 °C, which verifies the good wear resistance of NiCr–Cr3C2 coating.
基金financial supports from the National Key Basic Research Program of China (973 Program, No. 2012CB625100)the National Natural Science Foundation of China (Nos. 51001106 and 51301181)the Doctoral Starting up Foundation of Liaoning Province Science and Technology Agency, China (No. 20131118)
文摘There has been much interest in developing multilayered or nanolayered physical vapor deposition(PVD) coatings identified as a group of promising protective coatings for their excellent mechanical properties and corrosion resistance. In this study, the multilayered Cr N/Cr2O3 coatings with different bilayer periods(L) were synthesized on the polished high speed steel substrates from a Cr target with the alternative atmosphere of pure nitrogen and pure oxygen by arc ion plating(AIP) technique. The results revealed that the microstructure,morphologies and properties of the multilayered coatings were strongly influenced by the bilayer period(L).There were two kinds of interfaces in the multilayered Cr N/Cr2O3coatings: the sharp ones and the blurry ones. With reducing the value of L, the macro-particles densities decreased gradually, whereas the coating microhardness, adhesive strength and wear resistance first increased, and then decreased slightly or remained stable as the bilayer period L 〈 590 nm. The multilayered Cr N/Cr2O3 coating with the bilayer period L of 590 nm possessed the best comprehensive properties, namely the highest microhardness, the strongest adhesion, and the lowest wear rate.
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
基金Project (59975046) supported by the National Natural Science Foundation of China
文摘Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.
文摘Two types of plasma sprayed coatings (NiCrAlY and NiCrAlY-A12O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200-700 W and 5-30 mm/s respectively, the melted track grew in width and depth. In the optimum range of laser parameters, a homogeneous remelted layer without voids, cavities, unmelted particles and microcracks was formed. On the surface of remelted layers, Al203 and YAIO3 were detected. As a result of isothermal oxidation tests, weight gains of laser remelted coatings were obviously lower than that only plasma sprayed, especially laser remelted NiCrAlY-Al2O3 coatings. The effects of laser remelting and incorporation of A12O3 second phase in N1CrAlY matrix on high temperature oxidation resistance were discussed.
基金the National Key Basic Research Program of China("973 Program",No.2012CB625100)the National Natural Science Foundation of China(No.51001106&No.51301181)the Doctoral Starting up Foundation of Liaoning Province Science and Technology Agency,China(No.20131118)
文摘In this study, CrN/Cr2O3 double-layered coatings with various thickness ratios of CrN vs Cr2O3 layer were prepared by arc ion plating technology. The influences of the thickness ratio of CrN vs Cr2O3 layer on the microstructural characteristics as well as the mechanical and tribological properties of the CrN/Cr2O3 doublelayered coatings were investigated. The corresponding mechanisms were also discussed. The results indicated that the insertion of CrN layer between the Cr2O3 layer and substrate can effectively decrease the internal stress level of the coating. With increasing the thickness ratio of CrN vs Cr2O3 layer, the surface roughness of double-layered coatings decreased gradually, which had a certain influence on the friction coefficient. In addition, the microhardness also declined gradually, the adhesive strength almost increased linearly, whereas the wear rate declined firstly and then increased slightly. As the thickness ratio was 2:1, the double-layered coating exhibited the best wear resistance.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘The process of electrodepositing Fe-Cr2O3 composite coating on polyacrylonitrile (PAN)-based carbon fibers and its catalytic graphitization were studied. Carbon fibers with and without electrodeposited Fe-Cr2O3 composite coating were heat treated at different temperatures and the structural changes were characterized by XRD, Raman spectroscopy and SEM. The results indicate that Fe-Cr2O3 composite coating exhibits a significant catalytic effect on graphitization of carbon fibers at low temperatures. When the Fe-Cr2O3-coated carbon fibers were heat treated at 1 300℃ the interlayer spacing (doo2) and ratio of relative peak area (AD/AG) reach 3.364/k and 0.34, respectively. Whereas, the extent of graphitization of pristine carbon fibers is comparatively low even after heat treatment at 2 800℃ and the values of doo2 and AD/AG are 3.414 A and 0.68, respectively. The extent of graphitization of carbon fibers increases not only with the increase of the catalyst gross but also the Cr2O3 content in Fe-Cr2O3 coating. The catalytic effect of Fe-Cr2O3 composite coating accords with the dissolution-precipitation mechanism.
基金This project was supported by The National Natural Science Foundation of China (Grant No. 59801002).
文摘A new technique-series electro-pulse discharge (SEPD)-was developed as a sur-face coating process. In this technique, both positive and negative poles of a pulse power were used as the depositing electrodes with the substrate alloy as an induction electrode. Fe-Cr and Fe-Cr-Y2O3 micro-crystalline coatings were deposited on stain-less steel (Fe-18Cr-8Ni) surfaces. Oxidation at 950℃ in ambient air showed that the coatings greatly improved the oxidation resistance of the steel. The addition of dis-persed Y2O3 nano-particles into the alloy coatings was found to further reduce the scaling rate and enhance the adhesion of oxide scales.
基金the financial support from of the National Basic Research Program of China (Nos. 2012CB619600 and 2011CB012803)
文摘A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of the Cr3C2 coatings were studied. The contact angle between molten copper and the C/C decreased from 140°to 60°, demonstrating the significant improvement in the wettability. The Cr3C2- coated C/C-Cu composite with only 4.2% porosity and 3.69 gcm^-3 density was manufactured through copper infiltration. As a result, the thermal and electrical conductivity of the modified C/C-Cu increased significantly due to the infiltrated copper. Also the mechanical properties of the composites including both the flexural and compressive strengths were enhanced by over 100%. The modified C/C-Cu composite exhibited lower friction coefficients and wear rates for different load levels than those of the commercial C/Cu composite. These results demonstrate the potential of the modified C/C-Cu material for use in electrical contacts.