The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The mul...The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The multiple linear regression (MLR) methodwas employed todevelop the quantitative structure property relationship (QSPR) model equations for thedecoloration and mineralization of azodyes. Moreover, the predictive ability of the QSPR model equationswas assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride inwater on QSPR model equationswere also investigated. The results indicated that the heterogeneous photo-Fentondegradation of the azodyeswithdifferent structureswas conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for thedyedecoloration and mineralizationwere successfullydeveloped using MLR technique. MW/S (molecularweightdivided by the number of sulphonate groups) and N N=N (the number of azo linkage) are considered as the most importantdetermining factor for thedyedegradation and mineralization, and there is a significant negative correlation between MW/S or N N=N anddegradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloridedid not alter the nature of the QSPR model equations.展开更多
The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of ...The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.展开更多
A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron mic...A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron microscopy (TEM), high-resolution transmission electronmicroscopy (HREM) and energy dispersive spectrum (EDS) analysis. The microhardness of the alloy atdifferent annealing temperatures was measured. The results obtained indicate that the microhardnessof the rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr alloy does not vary with different annealingtemperatures. The as-quenched microstructure of the alloy includes two kinds of dispersed primaryphases: Al_3Ti and Al_(13)(Cr, Fe)_2. After annealing at 400 deg C for 10 h, the stable phaseAl_(13)Fe_4 appears in the microstructure.展开更多
基金supported by the Research Program of Application Foundation and Advanced Technology from the Tianjin Municipal Science and Technology Committee(No.11JCZDJ24600)the Natural Science Foundationof China(No.20773093)
文摘The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The multiple linear regression (MLR) methodwas employed todevelop the quantitative structure property relationship (QSPR) model equations for thedecoloration and mineralization of azodyes. Moreover, the predictive ability of the QSPR model equationswas assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride inwater on QSPR model equationswere also investigated. The results indicated that the heterogeneous photo-Fentondegradation of the azodyeswithdifferent structureswas conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for thedyedecoloration and mineralizationwere successfullydeveloped using MLR technique. MW/S (molecularweightdivided by the number of sulphonate groups) and N N=N (the number of azo linkage) are considered as the most importantdetermining factor for thedyedegradation and mineralization, and there is a significant negative correlation between MW/S or N N=N anddegradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloridedid not alter the nature of the QSPR model equations.
基金supported by the National Natural Science Foundation of China(No.52374372)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB430042)+3 种基金the Jiangsu Province Large Scientific Instruments Open Sharing Autonomous Research Filing Project,China(No.TC2023A037)the Yangzhou City−Yangzhou University Cooperation Foundation,China(No.YZ2022183)High-end Talent Support Program of Yangzhou University,China,Qinglan Project of Yangzhou University,ChinaLvyangjinfeng Talent program of Yangzhou,China.
文摘The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.
文摘A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron microscopy (TEM), high-resolution transmission electronmicroscopy (HREM) and energy dispersive spectrum (EDS) analysis. The microhardness of the alloy atdifferent annealing temperatures was measured. The results obtained indicate that the microhardnessof the rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr alloy does not vary with different annealingtemperatures. The as-quenched microstructure of the alloy includes two kinds of dispersed primaryphases: Al_3Ti and Al_(13)(Cr, Fe)_2. After annealing at 400 deg C for 10 h, the stable phaseAl_(13)Fe_4 appears in the microstructure.