期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Coupling damage and reliability model of low-cycle fatigue and high energy impact based on the local stress–strain approach 被引量:2
1
作者 Chen Hongxia Chen Yunxia Yang Zhou 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第4期846-855,共10页
Fatigue induced products generally bear fatigue loads accompanied by impact processes,which reduces their reliable life rapidly. This paper introduces a reliability assessment model based on a local stress–strain app... Fatigue induced products generally bear fatigue loads accompanied by impact processes,which reduces their reliable life rapidly. This paper introduces a reliability assessment model based on a local stress–strain approach considering both low-cycle fatigue and high energy impact loads.Two coupling relationships between fatigue and impact are given with effects of an impact process on fatigue damage and effects of fatigue damage on impact performance. The analysis of the former modifies the fatigue parameters and the Manson–Coffin equation for fatigue life based on material theories. On the other hand, the latter proposes the coupling variables and the difference of fracture toughness caused by accumulative fatigue damage. To form an overall reliability model including both fatigue failure and impact failure, a competing risk model is developed. A case study of an actuator cylinder is given to validate this method. 展开更多
关键词 coupling damage Fatigue High-energy impactLow-cycle Local stress-strain RELIABILITY Strain rate
原文传递
An Analytical Method to Detect the Coupling Damage Relationship of Concrete Subjected to Bending Fatigue and Temperature Actions
2
作者 李文婷 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期573-577,共5页
Based on the assumptions validated by the experiments,an analytical method to detect the coupling actions of bending fatigue and temperature on concrete was proposed.To this purpose,a coefficient denoted by f D (T)w... Based on the assumptions validated by the experiments,an analytical method to detect the coupling actions of bending fatigue and temperature on concrete was proposed.To this purpose,a coefficient denoted by f D (T)with the strain distributions caused by these two actions was defined.In terms of the known parameters and the fitted functions of strain,the explicit expression for f D (T)which develops in the way same as the law of temperature change in the body of specimens was obtained.Our experimental results indicate that the weigh fraction of temperature stress decreases in the coupling damage field with the fading temperature gradient,and consequently disclose the mutual influence between these two types of actions in the loading history. 展开更多
关键词 analytical method coupling damage concrete bending fatigue temperature
原文传递
Macro-micro damage and energy release rates of fractured sandstone subjected to dry-wet cycles
3
作者 Runqiu Wang Guilin Wang +2 位作者 Liang Zhang Fan Sun Boyi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3563-3576,共14页
The deterioration of rock mass in the Three Gorges reservoir area results from the coupled damage effects of macro-micro cracks and dry-wet cycles,and the coupled damage progression can be characterized by energy rele... The deterioration of rock mass in the Three Gorges reservoir area results from the coupled damage effects of macro-micro cracks and dry-wet cycles,and the coupled damage progression can be characterized by energy release rate.In this study,a series of dry-wet cycle uniaxial compression tests was conducted on fractured sandstone,and a method was developed for calculating macro-micro damage(D_(R))and energy release rates(Y_(R))of fractured sandstone subjected to dry-wet cycles by considering energy release rate,dry-wet damage and macro-micro damage.Therewith,the damage mechanisms and complex microcrack propagation patterns of rocks were investigated.Research indicates that sandstone degradation after a limited cycle count primarily exhibits exsolution of internal fillers,progressing to grain skeleton alteration and erosion with increased cycles.Compared with conventional methods,the D_(R) and Y_(R) methodologies exhibit heightened sensitivity to microcrack closure during compaction and abrupt energy release at the point of failure.Based on D_(R) and Y_(R),the failure process of fractured sandstone can be classified into six stages:stress adjustment(I),microcracks equal closure(II),nonlinear slow closure(III),low-speed extension(IV),rapid extension(V),and macroscopic main fracture emergence(VI).The abrupt change in damage energy release rate during stage V may serve as a reliable precursor for inducing failure.The stage-based classification may enhance traditional methods by tracking damage progression and accurately identifying rock failure precursors.The findings are expected to provide a scientific basis for understanding damage mechanisms and enabling early warning of reservoir-bank slope failure. 展开更多
关键词 Dry-wet cycle Energy evolution Coupled damage damage energy release rate Fractured sandstone
在线阅读 下载PDF
A meso-damage-based constitutive model for yellow sandstone under dry-wet cycles 被引量:1
4
作者 Zhe Qin Runchang Zhang +3 位作者 Weizheng Mao Jihuan Han Zhiwen Li Sunhao Zhang 《Deep Underground Science and Engineering》 2024年第4期497-507,共11页
The mechanical properties of rocks weaken under dry-wet cycles.This weakening may significantly modify the safety reserve of underground caverns or reservoir bank slopes.However,meso-damage has not been carefully stud... The mechanical properties of rocks weaken under dry-wet cycles.This weakening may significantly modify the safety reserve of underground caverns or reservoir bank slopes.However,meso-damage has not been carefully studied based on micromechanical observations and analyses.Therefore,in this study,meso-damage of a yellow sandstone is investigated and a meso-damage-based constitutive model for dry-wet cycles is proposed.First,computed tomography scanning and uniaxial compression tests were conducted on yellow sandstones under different dry-wet cycles.Second,the evolution of rock mesostructures and the damage mechanism subjected to dry-wet cycles were simulated using the discrete element method with Particle Flow Code in 2 Dimensions(PFC2D)software.Third,a constitutive model was proposed based on the meso-statistical theory and damage mechanics.Finally,this constitutive model was verified with the experimental results to check its prediction capability.It is found that the radius and number of pore throats in the sandstone increase gradually with the number of dry-wet cycles,and the pore structure connectivity is also improved.The contact force of sandstone interparticle cementation decreases approximately linearly and the continuity of the particle contact network is continuously broken.The meso-deformation and strength parameters show similar declining patterns to the modulus of elasticity and peak strength of the rock sample,respectively.This meso-damage-based constitutive model can describe well the rock deforma-tion in the initial pressure density stage and the damage stage under the coupling effect of dry-wet cycles and loads. 展开更多
关键词 constitutive model damage coupling dry-wet cycles particle flow code rock mechanics
原文传递
Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys:phase-field modeling
5
作者 Chao Xie Shijie Bai +2 位作者 Xiao Liu Minghua Zhang Jianke Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期361-383,共23页
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the... In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. 展开更多
关键词 Phase field Mg alloys Stress-corrosion coupled damage damage localization Finite element method
在线阅读 下载PDF
Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking 被引量:9
6
作者 Chonghong Ren Jin Yu +2 位作者 Xueying Liu Zhuqing Zhang Yanyan Cai 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1153-1165,共13页
In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compa... In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters. 展开更多
关键词 Cyclic constitutive equations ROCK Coupled damage COMPACTION CRACKING
在线阅读 下载PDF
A THERMO-PLASTIC/VISCOPLASTIC DAMAGE MODEL FOR GEOMATERIALS 被引量:6
7
作者 Hui Zhou Dawei Hu +1 位作者 Fan Zhang Jianfu Shao 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第3期195-208,共14页
A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneo... A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneous plastic strain and creep plastic strain. To take temperature effect into acconnt, a temperature variable was introduced into the instantaneous and creep plastic behavior descriptions and damage characterization, and a linear thermal expansion law was used in constitutive equation formulation. According to the mechanical behavior of rock salt, a specific model was proposed based on the previous model and applied to Avery rock salt, in which the numerical results obtained from our model had a good agreement with the data from experiments. 展开更多
关键词 thermo-plastic/viscoplastic damage coupled mechanical model geomaterial ROCKSALT
原文传递
Elimination mechanism of coal and gas outburst based on geo‑dynamic system with stress–damage–seepage interactions 被引量:2
8
作者 Lingjin Xu Chaojun Fan +4 位作者 Mingkun Luo Sheng Li Jun Han Xiang Fu Bin Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期47-61,共15页
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam... Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively. 展开更多
关键词 Coal and gas outburst Geo-dynamic system Stress–damage–seepage coupling Elimination mechanism Instability criterion Gas extraction
在线阅读 下载PDF
A SELF-CONSISTENT ANALYSIS FOR COUPLED ELASTOPLASTIC DAMAGE PROBLEMS
9
作者 黄模佳 扶名福 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第12期0-0,0-0+0-0+0-0+0-0,共10页
关键词 A SELF-CONSISTENT ANALYSIS FOR COUPLED ELASTOPLASTIC damage PROBLEMS
在线阅读 下载PDF
Fracture initiation and propagation in soft hydraulic fracturing of hot dry rock
10
作者 ZHOU Xiaoxia LI Gensheng +5 位作者 MA Zhengchao HUANG Zhongwei ZHANG Xu TIAN Shouceng ZOU Wenchao WANG Tianyu 《Petroleum Exploration and Development》 2024年第6期1598-1610,共13页
By considering the thermo poroelastic effects of rock,the constitutive relationship of fatigue deterioration of rock under cyclic loading,elastic-brittle failure criteria and wellbore stress superposition effects,a th... By considering the thermo poroelastic effects of rock,the constitutive relationship of fatigue deterioration of rock under cyclic loading,elastic-brittle failure criteria and wellbore stress superposition effects,a thermal-hydraulic-mechanicalfatigue damage coupled model for fracture propagation during soft hydraulic fracturing in hot dry rock(HDR)was established and validated.Based on this model,numerical simulations were conducted to investigate the fracture initiation and propagation characteristics in HDR under the combined effects of different temperatures and cyclic loading.The results are obtained in three aspects.First,cyclic injection,fluid infiltration,pore pressure accumulation,and rock strength deterioration collectively induce fatigue damage of rocks during soft hydraulic fracturing.Second,the fracture propagation pattern of soft hydraulic fracturing in HDR is jointly controlled by temperature difference and cyclic loading.A larger temperature difference generates stronger thermal stress,facilitating the formation of complex fracture networks.As cyclic loading decreases,the influence range of thermal stress expands.When the cyclic loading is 90%pb and 80%pb(where pb is the breakdown pressure during conventional hydraulic fracturing),the stimulated reservoir area increases by 88.33% and 120%,respectively,compared to conventional hydraulic fracturing(with an injection temperature of 25℃).Third,as cyclic loading is further reduced,the reservoir stimulation efficiency diminishes.When the cyclic loading decreases to 70%pb,the fluid pressure far away from the wellbore cannot reach the minimum breakdown pressure of the rock,resulting in no macroscopic hydraulic fractures. 展开更多
关键词 hot dry rock soft hydraulic fracturing thermal-hydraulic-mechanical-fatigue damage coupling thermal stress fatigue deterioration fracture propagation
在线阅读 下载PDF
Dynamic tensile strength and failure mechanisms of thermally treated sandstone under dry and water-saturated conditions 被引量:8
11
作者 Pin WANG Tu-bing YIN Bi-wei HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第8期2217-2238,共22页
To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston... To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed. 展开更多
关键词 SANDSTONE dynamic tensile strength hydro-thermal coupling damage loading rate dependence failure mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部