To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e...To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.展开更多
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safe...A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safety hazards.However,identifying modal parameters for structural health monitoring remains a major challenge due to its large deformations and flexibility.Vibration signal-based methods are essential for detecting damage and enabling timely maintenance to minimize losses.However,accurately extracting features from one-dimensional(1D)signals is often hindered by various environmental factors and measurement noises.To address this challenge,a novel approach based on a residual convolutional auto-encoder(RCAE)is proposed for detecting damage in deep-sea mining risers,incorporating a data fusion strategy.First,principal component analysis(PCA)is applied to reduce environmental fluctuations and fuse multisensor strain readings.Subsequently,a 1D-RCAE is used to extract damage-sensitive features(DSFs)from the fused dataset.A Mahalanobis distance indicator is established to compare the DSFs of the testing and healthy risers.The specific threshold for these distances is determined using the 3σcriterion,which is employed to assess whether damage has occurred in the testing riser.The effectiveness and robustness of the proposed approach are verified through numerical simulations of a 500-m riser and experimental tests on a 6-m riser.Moreover,the impact of contaminated noise and environmental fluctuations is examined.Results show that the proposed PCA-1D-RCAE approach can effectively detect damage and is resilient to measurement noise and environmental fluctuations.The accuracy exceeds 98%under noise-free conditions and remains above 90%even with 10 dB noise.This novel approach has the potential to establish a new standard for evaluating the health and integrity of risers during mining operations,thereby reducing the high costs and risks associated with failures.Maintenance activities can be scheduled more efficiently by enabling early and accurate detection of riser damage,minimizing downtime and avoiding catastrophic failures.展开更多
Person re-identification(re-id)involves matching a person across nonoverlapping views,with different poses,illuminations and conditions.Visual attributes are understandable semantic information to help improve the iss...Person re-identification(re-id)involves matching a person across nonoverlapping views,with different poses,illuminations and conditions.Visual attributes are understandable semantic information to help improve the issues including illumination changes,viewpoint variations and occlusions.This paper proposes an end-to-end framework of deep learning for attribute-based person re-id.In the feature representation stage of framework,the improved convolutional neural network(CNN)model is designed to leverage the information contained in automatically detected attributes and learned low-dimensional CNN features.Moreover,an attribute classifier is trained on separate data and includes its responses into the training process of our person re-id model.The coupled clusters loss function is used in the training stage of the framework,which enhances the discriminability of both types of features.The combined features are mapped into the Euclidean space.The L2 distance can be used to calculate the distance between any two pedestrians to determine whether they are the same.Extensive experiments validate the superiority and advantages of our proposed framework over state-of-the-art competitors on contemporary challenging person re-id datasets.展开更多
The reduction of Hamiltonian systems aims to build smaller reduced models,valid over a certain range of time and parameters,in order to reduce computing time.By maintaining the Hamiltonian structure in the reduced mod...The reduction of Hamiltonian systems aims to build smaller reduced models,valid over a certain range of time and parameters,in order to reduce computing time.By maintaining the Hamiltonian structure in the reduced model,certain longterm stability properties can be preserved.In this paper,we propose a non-linear reduction method for models coming from the spatial discretization of partial differential equations:it is based on convolutional auto-encoders and Hamiltonian neural networks.Their training is coupled in order to learn the encoder-decoder operators and the reduced dynamics simultaneously.Several test cases on non-linear wave dynamics show that the method has better reduction properties than standard linear Hamiltonian reduction methods.展开更多
文摘To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion.
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.
基金the National Key Research and Development Program of China(No.2023 YFC2811600)the National Natural Science Foundation of China(Nos.52301349,52088102)+1 种基金the Major Science and Technology Innovation Program of Qingdao(No.223-3-hygg-10-hy)the Qingdao Science Foundation for Post-doctoral Scientists(Nos.QDBSH20220202070,QDBSH20220201015)。
文摘A deep-sea riser is a crucial component of the mining system used to lift seafloor mineral resources to the vessel.Even minor damage to the riser can lead to substantial financial losses,environmental impacts,and safety hazards.However,identifying modal parameters for structural health monitoring remains a major challenge due to its large deformations and flexibility.Vibration signal-based methods are essential for detecting damage and enabling timely maintenance to minimize losses.However,accurately extracting features from one-dimensional(1D)signals is often hindered by various environmental factors and measurement noises.To address this challenge,a novel approach based on a residual convolutional auto-encoder(RCAE)is proposed for detecting damage in deep-sea mining risers,incorporating a data fusion strategy.First,principal component analysis(PCA)is applied to reduce environmental fluctuations and fuse multisensor strain readings.Subsequently,a 1D-RCAE is used to extract damage-sensitive features(DSFs)from the fused dataset.A Mahalanobis distance indicator is established to compare the DSFs of the testing and healthy risers.The specific threshold for these distances is determined using the 3σcriterion,which is employed to assess whether damage has occurred in the testing riser.The effectiveness and robustness of the proposed approach are verified through numerical simulations of a 500-m riser and experimental tests on a 6-m riser.Moreover,the impact of contaminated noise and environmental fluctuations is examined.Results show that the proposed PCA-1D-RCAE approach can effectively detect damage and is resilient to measurement noise and environmental fluctuations.The accuracy exceeds 98%under noise-free conditions and remains above 90%even with 10 dB noise.This novel approach has the potential to establish a new standard for evaluating the health and integrity of risers during mining operations,thereby reducing the high costs and risks associated with failures.Maintenance activities can be scheduled more efficiently by enabling early and accurate detection of riser damage,minimizing downtime and avoiding catastrophic failures.
基金supported by the National Natural Science Foundation of China(6147115461876057)the Fundamental Research Funds for Central Universities(JZ2018YYPY0287)
文摘Person re-identification(re-id)involves matching a person across nonoverlapping views,with different poses,illuminations and conditions.Visual attributes are understandable semantic information to help improve the issues including illumination changes,viewpoint variations and occlusions.This paper proposes an end-to-end framework of deep learning for attribute-based person re-id.In the feature representation stage of framework,the improved convolutional neural network(CNN)model is designed to leverage the information contained in automatically detected attributes and learned low-dimensional CNN features.Moreover,an attribute classifier is trained on separate data and includes its responses into the training process of our person re-id model.The coupled clusters loss function is used in the training stage of the framework,which enhances the discriminability of both types of features.The combined features are mapped into the Euclidean space.The L2 distance can be used to calculate the distance between any two pedestrians to determine whether they are the same.Extensive experiments validate the superiority and advantages of our proposed framework over state-of-the-art competitors on contemporary challenging person re-id datasets.
文摘The reduction of Hamiltonian systems aims to build smaller reduced models,valid over a certain range of time and parameters,in order to reduce computing time.By maintaining the Hamiltonian structure in the reduced model,certain longterm stability properties can be preserved.In this paper,we propose a non-linear reduction method for models coming from the spatial discretization of partial differential equations:it is based on convolutional auto-encoders and Hamiltonian neural networks.Their training is coupled in order to learn the encoder-decoder operators and the reduced dynamics simultaneously.Several test cases on non-linear wave dynamics show that the method has better reduction properties than standard linear Hamiltonian reduction methods.