期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
MPS-FEM Coupled Method for Study of Wave-Structure Interaction 被引量:4
1
作者 Guanyu Zhang Xiang Chen Decheng Wan 《Journal of Marine Science and Application》 CSCD 2019年第4期387-399,共13页
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam... Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained. 展开更多
关键词 MPS-FEM coupled method Fluid-structure interaction(FSI) Regular wave Wave impact pressure Structure deformation response
在线阅读 下载PDF
Characteristics of permanent magnet linear synchronous motor fed by spwm inverter based on field-circuit coupled method 被引量:1
2
作者 司纪凯 陈昊 +2 位作者 汪旭东 焦留成 袁世鹰 《Journal of Coal Science & Engineering(China)》 2008年第1期147-151,共5页
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the... Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results. 展开更多
关键词 permanent magnet linear synchronous motor sinusoidal pulse width modula-tion (SPWM) voltage source inverter CHARACTERISTICS field-circuit coupled adaptive time-stepping finite element method
在线阅读 下载PDF
Investigation of flight stability for fixed canard dual-spin projectile via CFD/RBD coupled method
3
作者 Gang Wang Tengyue Zhang +2 位作者 Tianyu Lin Haizhen Lin Ke Xi 《Defence Technology(防务技术)》 2025年第11期1-18,共18页
In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin proj... In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin projectile.The platform's reliability is validated by reproducing the characteristic resonance instability of such projectiles.By coupling the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations and the seven-degree-of-freedom RBD equations,the virtual flight simulations of fixed canard dual-spin projectiles at various curvature trajectories are achieved,and the dynamic mechanism of the trajectory following process is analyzed.The instability mechanism of the dynamic instability during trajectory following process of the fixed canard dual-spin projectile is elucidated by simulating the rolling/coning coupled forced motion,and subsequently validated through virtual flight simulations.The findings suggest that an appropriate yaw moment can drive the projectile axis to precession in the tangential direction of the trajectory,thereby enhancing the trajectory following stability.However,the damping of the projectile attains its minimum value when the forward body equilibrium rotational speed(-128 rad/s)is equal to the negative of the fast mode frequency of the projectile.Insufficient damping leads to the fixed canard dual-spin projectile exiting the dynamic stability domain during the trajectory following,resulting in weakly damped instability.Keeping the forward body not rotating or increasing the spin rates to-192 rad/s can enhance the projectile's damping,thereby improving its dynamic stability. 展开更多
关键词 Fixed canard dual-spin projectile CFD/RBD coupled method Virtualflight simulation Following stability Dynamic stability
在线阅读 下载PDF
Drilling process of indexable drill bit based on Coupled Eulerian-Lagrangian method:A simulation study
4
作者 Desheng HU Caixu YUE +4 位作者 Xianli LIU Zhipeng JIANG Yongshi XU Junhui LU Steven Y.LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期477-492,共16页
42CrMo steel has the characteristics of high strength,high wear resistance,high impact resistance,and fatigue resistance.Therefore,drilling 42CrMo steel has always been a challenging task.The indexable drill bit has t... 42CrMo steel has the characteristics of high strength,high wear resistance,high impact resistance,and fatigue resistance.Therefore,drilling 42CrMo steel has always been a challenging task.The indexable drill bit has the advantages of high processing efficiency and low processing cost and has been widely used in the field of aerospace hole processing.To better understand the machining mechanism of the indexable drill bit,this paper uses the Coupled EulerianLagrangian method(CEL)to simulate the three-dimensional drilling model for the first time.The simulation results of the drilling force obtained by the CEL method and Lagrangian method are compared with the experimental results.It is verified that the CEL method is easy to converge and can avoid the problem of program interruption caused by mesh distortion,and the CEL simulation value is more consistent with the actual value.Secondly,the simulation results of cutting force and blade cutting edge node temperature under different process parameters are extracted.The variation of time domain cutting force,frequency domain cutting force and tool temperature with process parameters are obtained.This study provides a new method for the prediction of cutting performance and the optimization of process parameters of indexable drills. 展开更多
关键词 42CrMo steel coupled EulerianLagrangian method Indexable drill bit Drilling force Process parameters
原文传递
Numerical simulation study on the mold strength of magnetic mold casting based on a coupled electromagnetic-structural method
5
作者 Wei-li Peng Jian-hua Zhao +1 位作者 Cheng Gu Ya-jun Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期577-587,共11页
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ... The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds. 展开更多
关键词 magnetic mold casting coupled electromagnetic-structural method numerical simulation stress analysis
在线阅读 下载PDF
A coupled Legendre-Laguerre polynomial method with analytical integration for the Rayleigh waves in a quasicrystal layered half-space with an imperfect interface
6
作者 Bo ZHANG Honghang TU +2 位作者 Weiqiu CHEN Jiangong YU L.ELMAIMOUNI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1539-1556,共18页
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th... The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices. 展开更多
关键词 coupled Legendre-Laguerre polynomial method analytical integration Rayleigh wave quasicrystal(QC)layered half-space imperfect interface
在线阅读 下载PDF
Assessment of slurry chamber clogging alleviation during ultra-large-diameter slurry tunnel boring machine tunneling in hard-rock using computational fluid dynamics-discrete element method:A case study
7
作者 Yidong Guo Xinggao Li +2 位作者 Dalong Jin Hongzhi Liu Yingran Fang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4715-4734,共20页
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un... To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future. 展开更多
关键词 Slurry tunnel boring machine(TBM) Short screw conveyor Slurry chamber clogging Computational fluid dynamics-discrete element method(CFD-DEM)coupled modeling Engineering application
在线阅读 下载PDF
A DUAL COUPLED METHOD FOR BOUNDARY VALUE PROBLEMS OF PDE WITH COEFFICIENTS OF SMALL PERIOD 被引量:17
8
作者 J.Z. Cui H.Y. Yang(Institute of Computational Mathematics and Scientific/Engineering Computing,Chinese Academy of Sciences, Beijing, China) 《Journal of Computational Mathematics》 SCIE CSCD 1996年第2期159-174,共16页
In this paper the homogenization method is improved to develop one kind of dual coupled approximate method, which reflects both the macro-scope properties of whole structure and its loadings, and micro-scope configura... In this paper the homogenization method is improved to develop one kind of dual coupled approximate method, which reflects both the macro-scope properties of whole structure and its loadings, and micro-scope configuration properties of composite materials. The boundary value problem of woven membrane is considered, the dual asymptotic expression of the exact solution is given, and its approximation and error estimation are discussed. Finally the numerical example shows the effectiveness of this dual coupled method. 展开更多
关键词 PDE A DUAL coupled method FOR BOUNDARY VALUE PROBLEMS OF PDE WITH COEFFICIENTS OF SMALL PERIOD
原文传递
A Review on the Coupled Method of Using the Magnetic and Acoustic Fields for Biological Tissue Imaging
9
作者 Yuanyuan Li Guoqiang Liu 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期47-60,共14页
Magnetic field and acoustic field coupled imaging methods mainly include magnetoacoustic tomography,magneto-acousto-electrical tomography,and thermoacoustic tomography,all of which non-invasively achieve the electrica... Magnetic field and acoustic field coupled imaging methods mainly include magnetoacoustic tomography,magneto-acousto-electrical tomography,and thermoacoustic tomography,all of which non-invasively achieve the electrical conductivity imaging of tissues with a resolution of up to the millimeter scale.The principles of these three imaging methods and the research progress in the last two decades are reviewed.First,the principles of the three magnetic and acoustic field coupled methods are individually introduced.The progress in medical electromagnetic imaging is further elaborated,and finally the future directions and summary of the coupled imaging methods are summarized. 展开更多
关键词 Biomedical imaging electromagnetic field acoustic field electrical conductivity coupled method
原文传递
Structural Strength Study of A Floating Wind Turbine Under Freak Waves Through the CFD-FEA Method 被引量:1
10
作者 HUO Fa-li LUO Ping +3 位作者 NIE Yan ZHAO Yu-peng LI Ming-yang XU Sheng 《China Ocean Engineering》 CSCD 2024年第6期943-957,共15页
In recent years,the exploitation of offshore wind resources has been attached with greater importance.As a result,semi-submersible floating wind turbines(FWTs)have gradually become a popular research topic,with the st... In recent years,the exploitation of offshore wind resources has been attached with greater importance.As a result,semi-submersible floating wind turbines(FWTs)have gradually become a popular research topic,with the structural strength being a research hotspot as it can ensure the safe operation of FWTs.The severe sea conditions of freak waves result in enormous wave heights,extremely fast wave speeds,and concentrated energy.Thus,it is difficult to accurately simulate these effects on the loads of floating wind turbines using the potential flow theory and other theories.In this paper,the structural strength of a floating wind turbine under the action of freak waves is analyzed based on the CFD-FEA coupled method.The effects of the mooring system and the wind load are considered in the time domain,and the CFD method is applied to analyze the wave load of the floating wind turbine under the extreme sea state of freak waves.The strength and motion of the floating wind turbine float structure are analyzed by combining the CFD method and the FEA method,and the analytical results of the mutual transfer of these two methods are taken as the initial quantities for further analysis.The accuracy of the analytical model of the CFD-FEA method is verified by the results of the tank test analysis,and the structural strength analysis under freak wave conditions is carried out for a new type of floating wind turbine.The results of this research provide useful guidance and references for the design and engineering applications of offshore floating wind turbines. 展开更多
关键词 floating wind turbines(FWTs) freak waves CFD-FEA coupled method structural strength
在线阅读 下载PDF
Tolerance of edge cascades with coupled map lattices methods 被引量:7
11
作者 崔迪 高自友 郑建风 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期992-996,共5页
This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating som... This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter λ can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter λ. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems. 展开更多
关键词 cascading failures coupled map lattice methods TOLERANCE
原文传递
The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method 被引量:16
12
作者 GAO Jingjing LIU Jihua +3 位作者 LI Xianguo YAN Quanshu WANG Xiaojing WANG Hongmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第1期109-117,共9页
An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud... An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples. 展开更多
关键词 marine geological sample high-pressure closed digestion method inductively coupled plasma optical emission spectrometry inductively coupled plasma mass spectrometry major element minor element trace element
在线阅读 下载PDF
Analysis of piezoelectric ceramic multilayer actuators based on an electro-mechanical coupled meshless method 被引量:1
13
作者 Xianghua Guo Daining Fang +2 位作者 Ai Kah Soh Hyun Chui KIM Jung Ju Lee 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期34-39,共6页
This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. In this method, an element free Galerkin (EFG) formulation, an enriched... This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. In this method, an element free Galerkin (EFG) formulation, an enriched basic function and some special shape functions that contain discontinuous derivatives are employed. Based on the moving least squares (MLS) interpolation approach, the EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method can yield an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. In another example studying a ceramic multilayer actuator, the proposed model was found to be accurate in the simulation of stress and electric field concentrations arround the abrupt end of an internal electrode. 展开更多
关键词 Meshfree method Ceramic multilayeractuator Electro-mechanical coupling
在线阅读 下载PDF
Two-dimensional Numerical Simulation of an Elastic Wedge Water Entry by a Coupled FDM-FEM Method
14
作者 Kangping Liao Changhong Hu Wenyang Duan 《Journal of Marine Science and Application》 2013年第2期163-169,共7页
Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyz... Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force. 展开更多
关键词 elastic wedge water entry coupled FDM-FEM method volume weighted method CIP method THINC/SW scheme hydroelastic behavior
在线阅读 下载PDF
The Coupled CFD/Free-Wake Method for Numerical Prediction of Rotor BVI Noise
15
作者 Wang Fei Xu Guohua Hu Zhiyuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第5期800-811,共12页
A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-average... A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-averaged Navier-Stokes(RANS)solver is established to simulate complex aerodynamic phenomena around blade and the tip-wake is captured by a free-wake model without numerical dissipation in the off-body wake zone.To overcome the time-consuming of the coupling strategy in previous studies,a more efficient coupling strategy is presented,by which only the induced velocity on the outer boundary grid need to be calculated.In order to obtain blade control settings,a delta trimming procedure is developed,which is more efficient than traditional trim method in the calculation of Jacobian matrix.Several flight conditions are simulated to demonstrate the validity of the coupled method.Then the rotor noise of operational load survey(OLS)is studied by the developed method as an application and the computational results are shown to be in good agreements with the available experimental data. 展开更多
关键词 HELICOPTER ROTOR coupled N-S/free-wake method delta trim method BVI noise
在线阅读 下载PDF
GPU-Based Simulation of Dynamic Characteristics of Ballasted Railway Track with Coupled Discrete-Finite Element Method
16
作者 Xu Li YingYan +1 位作者 Shuai Shao Shunying Ji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期645-671,共27页
Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irr... Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks. 展开更多
关键词 Ballasted track coupled discrete element-finite element method GPU parallel algorithm dynamic characteristics
在线阅读 下载PDF
Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method
17
作者 Yi Ruan Kan Li +1 位作者 Qiang Lin Ting Zhang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第4期42-45,共4页
We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanos... We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanosized tip shape,the tip open angle and the illumination angle are revealed. In combination with the previous results, we establish a complete model to understand the tip-nanoparticle near-field coupling mechanism. 展开更多
关键词 Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by coupled Dipole method
原文传递
Dynamic thermo-mechanical coupled response of random particulate composites:A statistical two-scale method
18
作者 杨自豪 陈云 +1 位作者 杨志强 马强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期605-616,共12页
This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of... This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses. 展开更多
关键词 random particulate composites statistical second-order two-scale (SSOTS) analysis method thermo-mechanical coupling effect numerical algorithm
原文传递
Numerical Simulation of the Seismic Response of a Horizontal Storage Tank Based on a SPH-FEM Coupling Method
19
作者 Peilei Yan Endong Guo +1 位作者 HouliWu Liangchao Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1655-1678,共24页
A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a... A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation. 展开更多
关键词 SPH-FEM coupling method horizontal storage tank seismic response SLOSHING
在线阅读 下载PDF
Influence of coupled boundary layer suction and bowed blade on flow field and performance of a diffusion cascade 被引量:13
20
作者 Cao Zhiyuan Liu Bo +2 位作者 Zhang Ting Yang Xiqiong Chen Pingping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期249-263,共15页
Based on the investigation of mid-span local boundary layer suction and positive bowed cascade, a coupled local tailored boundary layer suction and positive bowed blade method is developed to improve the performance o... Based on the investigation of mid-span local boundary layer suction and positive bowed cascade, a coupled local tailored boundary layer suction and positive bowed blade method is developed to improve the performance of a highly loaded diffusion cascade with less suction slot. The effectiveness of the coupled method under different inlet boundary layers is also investigated.Results show that mid-span local boundary layer suction can effectively remove trailing edge separation, but deteriorate the flow fields near the endwall. The positive bowed cascade is beneficial for reducing open corner separation, but is detrimental to mid-span flow fields. The coupled method can further improve the performance and flow field of the cascade. The mid-span trailing edge separation and open corner separation are eliminated. Compared with linear cascade with suction, the coupled method reduces overall loss of the cascade by 31.4% at most. The mid-span loss of the cascade decreases as the suction coefficient increases, but increases as bow angle increases. The endwall loss increases as the suction coefficient increases. By contrast, the endwall loss decreases significantly as the bow angle increases. The endwall loss of coupled controlled cascade is higher than that of bowed cascade with the same bow angle because of the spanwise inverse ‘‘C" shaped static pressure distribution. Under different inlet boundary layer conditions, the coupled method can also improve the cascade effectively. 展开更多
关键词 Axial compressor Boundary layer suction Bowed blade Corner separation coupled method Passage vortex
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部