This paper presents the Bayes estimation and empirical Bayes estimation of causal effects in a counterfactual model. It also gives three kinds of prior distribution of the assumptions of replaceability. The experiment...This paper presents the Bayes estimation and empirical Bayes estimation of causal effects in a counterfactual model. It also gives three kinds of prior distribution of the assumptions of replaceability. The experiment shows that empirical Bayes estimation is better than other estimations when not knowing which assumption is true.展开更多
Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroim...Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroimaging data holds immense potential for capturing the spatio-temporal dynamics of disease progression,its effective analysis is hampered by significant challenges:temporal heterogeneity(irregularly sampled scans),multi-modal misalignment,and the propensity of deep learning models to learn spurious,noncausal correlations.We propose CASCADE-Net,a novel end-to-end pipeline for robust and interpretable MCI-to-AD progression prediction.Our architecture introduces a Dynamic Temporal Alignment Module that employs a Neural Ordinary Differential Equation(Neural ODE)to model the continuous,underlying progression of pathology from irregularly sampled scans,effectively mapping heterogeneous patient data to a unified latent timeline.This aligned,noise-reduced spatio-temporal data is then processed by a predictive model featuring a novel Causal Spatial Attention mechanism.This mechanism not only identifies the critical brain regions and their evolution predictive of conversion but also incorporates a counterfactual constraint during training.This constraint ensures the learned features are causally linked to AD pathology by encouraging invariance to non-causal,confounder-based changes.Extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that CASCADE-Net significantly outperforms state-of-the-art sequential models in prognostic accuracy.Furthermore,our model provides highly interpretable,causally-grounded attention maps,offering valuable insights into the disease progression process and fostering greater clinical trust.展开更多
文摘This paper presents the Bayes estimation and empirical Bayes estimation of causal effects in a counterfactual model. It also gives three kinds of prior distribution of the assumptions of replaceability. The experiment shows that empirical Bayes estimation is better than other estimations when not knowing which assumption is true.
文摘Predicting the progression from Mild Cognitive Impairment(MCI)to Alzheimer's Disease(AD)is a critical challenge for enabling early intervention and improving patient outcomes.While longitudinal multi-modal neuroimaging data holds immense potential for capturing the spatio-temporal dynamics of disease progression,its effective analysis is hampered by significant challenges:temporal heterogeneity(irregularly sampled scans),multi-modal misalignment,and the propensity of deep learning models to learn spurious,noncausal correlations.We propose CASCADE-Net,a novel end-to-end pipeline for robust and interpretable MCI-to-AD progression prediction.Our architecture introduces a Dynamic Temporal Alignment Module that employs a Neural Ordinary Differential Equation(Neural ODE)to model the continuous,underlying progression of pathology from irregularly sampled scans,effectively mapping heterogeneous patient data to a unified latent timeline.This aligned,noise-reduced spatio-temporal data is then processed by a predictive model featuring a novel Causal Spatial Attention mechanism.This mechanism not only identifies the critical brain regions and their evolution predictive of conversion but also incorporates a counterfactual constraint during training.This constraint ensures the learned features are causally linked to AD pathology by encouraging invariance to non-causal,confounder-based changes.Extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that CASCADE-Net significantly outperforms state-of-the-art sequential models in prognostic accuracy.Furthermore,our model provides highly interpretable,causally-grounded attention maps,offering valuable insights into the disease progression process and fostering greater clinical trust.