With the widespread application of Staggered Counter-rotating Rotor(SCR)systems in eVTOL and UAV configurations,a comprehensive understanding of SCR performance under Outof-Ground Effect(OGE)and In-Ground Effect(IGE)c...With the widespread application of Staggered Counter-rotating Rotor(SCR)systems in eVTOL and UAV configurations,a comprehensive understanding of SCR performance under Outof-Ground Effect(OGE)and In-Ground Effect(IGE)conditions is crucial for aircraft design and landing safety.This study experimentally measured the changes in thrust and torque of the upper and lower rotors in an SCR system under varying axial and radial distances.It focuses on the interaction mechanisms between the upper and lower rotors and conducts specific IGE state experiments for certain SCR configurations.The findings reveal that changes in the lower rotor predominantly influence the overall performance of the SCR system,regardless of OGE or IGE conditions.Under OGE conditions,radial distance has a more significant impact than axial distance.Conversely,under IGE conditions,the axial distance plays a critical role in improving SCR system performance.These results provide a broad parameter range to assess SCR system performance variations,offering guidance for the design of new concept rotorcraft configurations and the development of aerodynamic prediction models under IGE conditions.展开更多
The counter-rotating electrochemical machining(CRECM) shows unique potential in the machining of thin-walled rotating parts with complex convex structures. CREM realizes the shaping of complex convex structures throug...The counter-rotating electrochemical machining(CRECM) shows unique potential in the machining of thin-walled rotating parts with complex convex structures. CREM realizes the shaping of complex convex structures through the relative rotation of the cathode and anode.The complex motion pattern and electric field distribution make it difficult to apply the existing cathode design methods to CRECM. To solve this problem, the matrix equations of cathode motion based on the kinematics and the electric field simulation model are established. The motion trajectories and edge contours at different angles are analyzed. The rotational overlap theory of motion trajectories under the windows at different angles is proved. Besides, the relationship between electric field distribution and the convex structure forming under different angle windows is studied, and the fundamental reason for deviations occurs when the convex profile is rotated to coincide is revealed. Therefore, a prediction model of the sidewall dissolution is established to correct this deviation, thereby deriving a high-precision design formula for the cathode windows of the high convex structures. By designing a cathode with oval-like windows to curry out CRECM experiments, the array-arranged(30 × 5) circular high convex structure with a maximum roundness error of 0.065 mm is successfully fabricated.展开更多
The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound...The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.展开更多
Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interact...Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.展开更多
Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomogr...Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.展开更多
Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s...Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctua...This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind circumstance. In this paper, the tandem impellers prepared for the counter-rotating type pumping unit were operated at the turbine mode, and the performances and the flow conditions were investigated numerically with accompanying the experimental results. Even though providing the pumping unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runners/impellers of the unit work evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet, without the guide vanes. From these results, it can be concluded that this type unit is effective to work at not only the pumping but also the turbine modes.展开更多
Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ...Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.展开更多
Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial researc...Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial research, to provide the constant power with good quality for the grid system, even at the suddenly fluctuating/turbulent output from renewable energies. In the unit, the angular momentum changes through the front impeller/runner must be the same as that through the rear impeller/runner, that is, the axial flow at the outlet should be the same to the axial flow at the inlet. Such flow conditions are advantageous to work at not only the pumping mode but also the turbine mode. This work discusses experimentally the performance of the unit, and verifies that this type unit is very effective to both operating modes.展开更多
It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power ...It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.展开更多
In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpi...In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpiece and the cathode tool rotate relative to each other at the same rotation speed. In contrast to the conventional schemes of ECM machining with linear motion of a block tool electrode, this scheme of ECM is unique, and has not been adequately studied yet. In this paper, the finite element method (FEM) is used to simulate the anode shaping process during CRECM, and the simulation process which involves a meshing model, a moving boundary, and a simulation algorithm is described. The simulated anode profiles of the convex structure at different processing times show that the CRECM process can be used to fabricate convex structures of various shapes with different heights. Besides, the variation of the inter-electrode gap indicates that this process can also reach a relative equilibrium state like that in conventional ECM. A rectangular convex and a circular convex are successfully fabricated on revolving parts. The experimental results indicate relatively good agreement with the simulation results. The proposed simulation process is valid for convex shaping prediction and feasibility studies as well.展开更多
Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is...Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 ram. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.展开更多
With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies ...With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies in the field of the bulb turbine with single-stage runner, though reports about counter-rotating tandem-runner are rare. However, the further high-head application with the single-stage runner is very difficult to achieve due to the limit of the specific speed. In this paper, a new bulb turbine with the tandem-runner is designed in order to substantially increase the applicable limit toward higher head with larger power. A half of the net head is absorbed by the frontal runner which can generate output power, while the remaining half is absorbed by the rear runner. To generate the Euler energy required for the rear runner, the frontal runner has the counter-rotation against the rear runner so that the counter-rotating tandem-runner can meet the purpose of double head and power under the same size as the conventional bulb turbine. Supply and demand of Euler energy between the two runners are thoroughly optimized through the detailed flow analysis, in order to secure the stable operation. As a result, the interference of Euler energies between the outflow from the frontal runner and the inflow to the rear runner is confirmed to be very small on the counter-rotating interface between the two runners. The prediction method of on-cam performance between the two adjustable runners is also developed numerically, which provides optimal flow between the two runners. This research provides a theoretical basis for the optimal design and operation of the counter-rotating tandem-runner bulb turbines.展开更多
The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of...The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of an oval anode workpiece in counter-rotating ECM(CRECM)is investigated. The variation of the minimum IEG is analyzed theoretically, and the results indicate that rather than reaching equilibrium, the minimum IEG in CRECM expands constantly when a constant feed speed is used for the cathode tool. This IEG expansion leads to a poor localization effect and has an adverse influence on the roundness of the machined workpiece. To maintain a small constant IEG in CRECM, a variable feed speed is used for the cathode based on a fitted equation. The theoretical results show that the minimum IEG can be controlled at a small value by using an accelerated feed speed. Experiments have been conducted using a specific experimental apparatus in which the cathode tool is designed as a combined structure of two sectors and a thin sheet. By detecting the machining currents flowing through the minimum IEG, how the latter varies is obtained indirectly. The results indicate that using an accelerated feed speed is effective for controlling the IEG, thereby improving the roundness of the machined workpiece.展开更多
The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the ...The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.展开更多
Counter-rotating electrochemical machining(CRECM)is a novel electrochemical machining(ECM)method,which can be used to machine convex structures with complex shapes on the outer surface of casings.In this study,the evo...Counter-rotating electrochemical machining(CRECM)is a novel electrochemical machining(ECM)method,which can be used to machine convex structures with complex shapes on the outer surface of casings.In this study,the evolution of the convex structure during CRECM is studied.The complex motion form of CRECM is replaced by an equivalent kinematic model,in which the movement of the cathode tool is realized by matrix equations.The trajectory of the cathode tool center satisfies the Archimedes spiral equation,and the feed depth in adjacent cycles is a constant.The simulation results show that the variations of five quality indexes for the convex structure:as machining time increases,the height increases linearly,and the width reduces linearly,the fillets at the top and root fit the rational function,and the inclination angle of the convex satisfies the exponential function.The current density distributions with different rotation angles is investigated.Owing to the differential distribution of current density on workpiece surface,the convex is manufactured with the cathode window transferring into and out of the processing area.Experimental results agree very well with the simulation,which indicates that the proposed model is effective for prediction the evolution of the convex structure in CRECM.展开更多
An aerodynamic design criterion was discussed for the 1+3/2 counter-rotating turbine by analyzing the velocity triangles.There are 8 key aerodynamic parameters in the criterion,based on the consideration of aerodynami...An aerodynamic design criterion was discussed for the 1+3/2 counter-rotating turbine by analyzing the velocity triangles.There are 8 key aerodynamic parameters in the criterion,based on the consideration of aerodynamic efficiency and some strength requirements.Then,an aerodynamic design for the 1+3/2 counter-rotating turbine was made according to the criterion,and a three-dimensional simulation was conducted for it.Finally,the conclusions were obtained.The criterion containing 8 key aerodynamic parameters is verified rationally and the efficiency of the turbine reaches 91%.The aerodynamic characteristics of 1+3/2 counter-rotating turbine are mainly decided by the load coefficient,and due to an optimal power distribution coefficient of the low pressure turbine,the efficiency of the low pressure turbine can be best.展开更多
This paper studies the communication problem at the counter-rotating seam of the low-orbit satellite based on the walker constellation. The counter-rotating seam has a short life cycle, low capacity, and dynamic geome...This paper studies the communication problem at the counter-rotating seam of the low-orbit satellite based on the walker constellation. The counter-rotating seam has a short life cycle, low capacity, and dynamic geometric parameters. To better utilize the scarce link resources at the seam, increase network throughput, and approach the physical limits of the link throughput at the seam, an initial phase condition that maximizes the relative rotational joint link throughput is calculated. In the experimental simulation results using the Iridium system as an example, it is shown that better throughput can be obtained under the initial conditions, and the throughput is improved by about 30%.展开更多
Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating cir...Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.展开更多
基金funded by the National Natural Science Foundation of China(Nos.52202443,52275114)the China Postdoctoral Science Foundation(No.2023M731656)+3 种基金the National Key Laboratory of Helicopter Aeromechanics Foundation,China(No.2023-HA-LB-067-05e)the Natural Science Foundation of Jiangsu Province,China(No.BK20220898)the Jiangsu Funding Program for Excellent Postdoctoral Talent,China(No.JB0202003)the Aeronautical Science Foundation of China(No.20232010052002)。
文摘With the widespread application of Staggered Counter-rotating Rotor(SCR)systems in eVTOL and UAV configurations,a comprehensive understanding of SCR performance under Outof-Ground Effect(OGE)and In-Ground Effect(IGE)conditions is crucial for aircraft design and landing safety.This study experimentally measured the changes in thrust and torque of the upper and lower rotors in an SCR system under varying axial and radial distances.It focuses on the interaction mechanisms between the upper and lower rotors and conducts specific IGE state experiments for certain SCR configurations.The findings reveal that changes in the lower rotor predominantly influence the overall performance of the SCR system,regardless of OGE or IGE conditions.Under OGE conditions,radial distance has a more significant impact than axial distance.Conversely,under IGE conditions,the axial distance plays a critical role in improving SCR system performance.These results provide a broad parameter range to assess SCR system performance variations,offering guidance for the design of new concept rotorcraft configurations and the development of aerodynamic prediction models under IGE conditions.
基金supported by the National Natural Science Foundation of China (no.52175414)National Natural Science Foundation of China for Creative Research Groups (51921003)+1 种基金Natural Science Foundation of Jiangsu Province of China (No. BK20220134)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX22_0344)。
文摘The counter-rotating electrochemical machining(CRECM) shows unique potential in the machining of thin-walled rotating parts with complex convex structures. CREM realizes the shaping of complex convex structures through the relative rotation of the cathode and anode.The complex motion pattern and electric field distribution make it difficult to apply the existing cathode design methods to CRECM. To solve this problem, the matrix equations of cathode motion based on the kinematics and the electric field simulation model are established. The motion trajectories and edge contours at different angles are analyzed. The rotational overlap theory of motion trajectories under the windows at different angles is proved. Besides, the relationship between electric field distribution and the convex structure forming under different angle windows is studied, and the fundamental reason for deviations occurs when the convex profile is rotated to coincide is revealed. Therefore, a prediction model of the sidewall dissolution is established to correct this deviation, thereby deriving a high-precision design formula for the cathode windows of the high convex structures. By designing a cathode with oval-like windows to curry out CRECM experiments, the array-arranged(30 × 5) circular high convex structure with a maximum roundness error of 0.065 mm is successfully fabricated.
基金supported by the National Natural Science Foundation of China(11704345)the Key Laboratory of Science and Technology for National Defence Foundation(9140C290304140C29133)
文摘The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles.
文摘Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.
基金supported by the National Natural Science Foundation of China(Nos.12232002,12072017,12002199,and 11721202)。
文摘Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.
文摘Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
文摘This serial research has proposed the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind circumstance. In this paper, the tandem impellers prepared for the counter-rotating type pumping unit were operated at the turbine mode, and the performances and the flow conditions were investigated numerically with accompanying the experimental results. Even though providing the pumping unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runners/impellers of the unit work evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet, without the guide vanes. From these results, it can be concluded that this type unit is effective to work at not only the pumping but also the turbine modes.
文摘Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.
文摘Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial research, to provide the constant power with good quality for the grid system, even at the suddenly fluctuating/turbulent output from renewable energies. In the unit, the angular momentum changes through the front impeller/runner must be the same as that through the rear impeller/runner, that is, the axial flow at the outlet should be the same to the axial flow at the inlet. Such flow conditions are advantageous to work at not only the pumping mode but also the turbine mode. This work discusses experimentally the performance of the unit, and verifies that this type unit is very effective to both operating modes.
文摘It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.
基金supported by the Program for New Century Excellent Talents in University of China(NCET-10-0074)
文摘In counter-rotating electrochemical machining (CRECM), a revolving cathode tool with hollow windows of various shapes is used to fabricate convex structures on a revolving part. During this process, the anode workpiece and the cathode tool rotate relative to each other at the same rotation speed. In contrast to the conventional schemes of ECM machining with linear motion of a block tool electrode, this scheme of ECM is unique, and has not been adequately studied yet. In this paper, the finite element method (FEM) is used to simulate the anode shaping process during CRECM, and the simulation process which involves a meshing model, a moving boundary, and a simulation algorithm is described. The simulated anode profiles of the convex structure at different processing times show that the CRECM process can be used to fabricate convex structures of various shapes with different heights. Besides, the variation of the inter-electrode gap indicates that this process can also reach a relative equilibrium state like that in conventional ECM. A rectangular convex and a circular convex are successfully fabricated on revolving parts. The experimental results indicate relatively good agreement with the simulation results. The proposed simulation process is valid for convex shaping prediction and feasibility studies as well.
基金Supported by Program for New Century Excellent Talents in University,China(Grant No.10-0074)
文摘Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 ram. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.
基金supported by National Natural Science Foundation of China (Grant Nos. 50879026, 50679027)
文摘With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies in the field of the bulb turbine with single-stage runner, though reports about counter-rotating tandem-runner are rare. However, the further high-head application with the single-stage runner is very difficult to achieve due to the limit of the specific speed. In this paper, a new bulb turbine with the tandem-runner is designed in order to substantially increase the applicable limit toward higher head with larger power. A half of the net head is absorbed by the frontal runner which can generate output power, while the remaining half is absorbed by the rear runner. To generate the Euler energy required for the rear runner, the frontal runner has the counter-rotation against the rear runner so that the counter-rotating tandem-runner can meet the purpose of double head and power under the same size as the conventional bulb turbine. Supply and demand of Euler energy between the two runners are thoroughly optimized through the detailed flow analysis, in order to secure the stable operation. As a result, the interference of Euler energies between the outflow from the frontal runner and the inflow to the rear runner is confirmed to be very small on the counter-rotating interface between the two runners. The prediction method of on-cam performance between the two adjustable runners is also developed numerically, which provides optimal flow between the two runners. This research provides a theoretical basis for the optimal design and operation of the counter-rotating tandem-runner bulb turbines.
基金supported by the National Natural Science Foundation of China (51535006, 51805259)Natural Science Foundation of Jiangsu Province of China (BK20180431)+2 种基金Fundamental Research Funds for the Central Universities of China (3082018NP2018406)Young Elite Scientists Sponsorship Program by CAST of ChinaJiangsu Key Laboratory of Precision and Micro-Manufacturing Technology of China
文摘The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of an oval anode workpiece in counter-rotating ECM(CRECM)is investigated. The variation of the minimum IEG is analyzed theoretically, and the results indicate that rather than reaching equilibrium, the minimum IEG in CRECM expands constantly when a constant feed speed is used for the cathode tool. This IEG expansion leads to a poor localization effect and has an adverse influence on the roundness of the machined workpiece. To maintain a small constant IEG in CRECM, a variable feed speed is used for the cathode based on a fitted equation. The theoretical results show that the minimum IEG can be controlled at a small value by using an accelerated feed speed. Experiments have been conducted using a specific experimental apparatus in which the cathode tool is designed as a combined structure of two sectors and a thin sheet. By detecting the machining currents flowing through the minimum IEG, how the latter varies is obtained indirectly. The results indicate that using an accelerated feed speed is effective for controlling the IEG, thereby improving the roundness of the machined workpiece.
文摘The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.
基金the financial support provided by National Natural Science Foundation of China(51805259)Natural Science Foundation of Jiangsu Province of China(No.BK20180431)+1 种基金Postdoctoral Science Foundation of China(No.2019M661833)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology and Young Elite Scientists Sponsorship Program by CAST。
文摘Counter-rotating electrochemical machining(CRECM)is a novel electrochemical machining(ECM)method,which can be used to machine convex structures with complex shapes on the outer surface of casings.In this study,the evolution of the convex structure during CRECM is studied.The complex motion form of CRECM is replaced by an equivalent kinematic model,in which the movement of the cathode tool is realized by matrix equations.The trajectory of the cathode tool center satisfies the Archimedes spiral equation,and the feed depth in adjacent cycles is a constant.The simulation results show that the variations of five quality indexes for the convex structure:as machining time increases,the height increases linearly,and the width reduces linearly,the fillets at the top and root fit the rational function,and the inclination angle of the convex satisfies the exponential function.The current density distributions with different rotation angles is investigated.Owing to the differential distribution of current density on workpiece surface,the convex is manufactured with the cathode window transferring into and out of the processing area.Experimental results agree very well with the simulation,which indicates that the proposed model is effective for prediction the evolution of the convex structure in CRECM.
文摘An aerodynamic design criterion was discussed for the 1+3/2 counter-rotating turbine by analyzing the velocity triangles.There are 8 key aerodynamic parameters in the criterion,based on the consideration of aerodynamic efficiency and some strength requirements.Then,an aerodynamic design for the 1+3/2 counter-rotating turbine was made according to the criterion,and a three-dimensional simulation was conducted for it.Finally,the conclusions were obtained.The criterion containing 8 key aerodynamic parameters is verified rationally and the efficiency of the turbine reaches 91%.The aerodynamic characteristics of 1+3/2 counter-rotating turbine are mainly decided by the load coefficient,and due to an optimal power distribution coefficient of the low pressure turbine,the efficiency of the low pressure turbine can be best.
文摘This paper studies the communication problem at the counter-rotating seam of the low-orbit satellite based on the walker constellation. The counter-rotating seam has a short life cycle, low capacity, and dynamic geometric parameters. To better utilize the scarce link resources at the seam, increase network throughput, and approach the physical limits of the link throughput at the seam, an initial phase condition that maximizes the relative rotational joint link throughput is calculated. In the experimental simulation results using the Iridium system as an example, it is shown that better throughput can be obtained under the initial conditions, and the throughput is improved by about 30%.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.61690223,11561121002,61521093,11227902,11404356,and 11574332)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16)
文摘Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.