This paper makes some qualitative and quantitative analyses about halo formation rules of some mirror nuclei with the relativistic mean-field (RMF) theory and the Woods Saxon mean-field model. By analysing two oppos...This paper makes some qualitative and quantitative analyses about halo formation rules of some mirror nuclei with the relativistic mean-field (RMF) theory and the Woods Saxon mean-field model. By analysing two opposite effects of Coulomb interaction on the proton halo formation, it finds that the energy level shift has a larger contribution than that of the Coulomb barrier when the mass number A is small, the hindrance of the Coulomb barrier becomes more obvious with the increase of the mass number A, and the overall effect of the Coulomb interaction almost disappears when A ≈ 39 as its two effects counteract with each other.展开更多
New theoretical calculations are performed to investigate the Coulomb proximity and angular momentum effects on multifragmentation picture for84Kr+112,124 Sn collisions at an incident beam energy of 35 Me V/nucleon.Ch...New theoretical calculations are performed to investigate the Coulomb proximity and angular momentum effects on multifragmentation picture for84Kr+112,124 Sn collisions at an incident beam energy of 35 Me V/nucleon.Charge and isotopic distributions and the mean neutron-to-proton ratios of the fragments are reproduced within the microcanonical Markov chain calculations on the basis of Statistical Multifragmentation Model. It is shown that the Coulomb interactions and angular momentum effects are very important to reproduce isotopic composition of nuclear fragments in peripheral heavy-ion collisions at Fermi energies. Our results imply that it is possible to investigate in laboratories the modification of structure parameters of fragments, such as the symmetry energy coefficient, at subnuclear densities in dense environment of other species.展开更多
We investigate atomic above-threshold ionization in elliptically polarized strong laser fields with a semiclassical approach.With increasing laser intensity,the Coulomb focusing(CF) effects are found to become stron...We investigate atomic above-threshold ionization in elliptically polarized strong laser fields with a semiclassical approach.With increasing laser intensity,the Coulomb focusing(CF) effects are found to become stronger in both parallel and perpendicular directions with respect to the polarization plane.The dependence of CF effects on tunnel exit,initial transverse momentum distribution and laser electric field is analyzed.It was revealed that the effects of tunnel exit are most prominent with variation of the laser intensity,and the other two factors both play non-negligible roles.Our results provide a deeper insight to the recent experiments of Coulomb asymmetry[Shafir D,et al.,2013 Phys.Rev.Lett.111 023005 and Li M,et al,2013 Phys.Rev.Lett.111 023006].展开更多
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capac...The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.展开更多
We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle, Employing the equation of motion method for the nonequilibrium Green's function, we show that ...We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle, Employing the equation of motion method for the nonequilibrium Green's function, we show that the oscillation of the dot, i.e., the time-dependent coupling between the dot's electron and the reservoirs, can destroy the Kondo effect. With the increase in the oscillation frequency of the dot, the density of states of the quantum dot shuttle changes from the Kondo-like to a Coulomb-blockade pattern. Increasing the coupling between the dot and the electrodes may partly recover the Kondo peak in the spectrum of the density of states. Understanding of the effect of mechanical motion on the transport properties of an electron shuttle is important for the future application of nanoelectromechanical devices.展开更多
A new theoretical model of the triatomic molecular wake effect is proposed and applied to molecular ions D^+3 and HD^+2 while passing through a solid. The wake effects resulting from the reactions of the two similar...A new theoretical model of the triatomic molecular wake effect is proposed and applied to molecular ions D^+3 and HD^+2 while passing through a solid. The wake effects resulting from the reactions of the two similar ions with thin carbon foil are also investigated by using the Coulomb explosion technique. The experimental results are in good agreement with theoretical estimates and the molecular structure of HD^+2 is determined by using the model.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
To get a dielectric material with a high dielectric permittivity and suppressed dielectric loss,nano-Ag with a particle size of 20 nm and Ag@TiO_(2)core-shell particles with diameters of approximately 70-120 nm were e...To get a dielectric material with a high dielectric permittivity and suppressed dielectric loss,nano-Ag with a particle size of 20 nm and Ag@TiO_(2)core-shell particles with diameters of approximately 70-120 nm were embedded in polyvinylidene fluoride(PVDF)to fabricate nano-Ag/Ag@TiO_(2)/PVDF composites.After being modified by nano-Ag with 3 vol%optimal amount,the relative permittivity(ε_r)at 100 Hz of 50 vol%Ag@TiO_(2)/PVDF composites was 61,and the dielectric loss can be suppressed to 0.04,almost 96.4%lower than that of unmodified composites,and a higher frequency stability of bothε_r and loss has also been found.The underlying mechanism of the reduced loss was attributed to Maxwell-Wagner polarization and the Coulomb blockade effect caused by the introduction of a small amount of nano-Ag,which will block the movement of electrons between metal nanoparticles and composites.The space charge polarization and conductance loss are weakened at lower and higher Ag@TiO_(2)filling ratios,respectively,thus leading to a very low loss of the composites.展开更多
This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investig...This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the confining pressure and the type of geotextile. Modeling was performed on samples with five different diameters: 38, 100, 200, 500 and 600 mm. The elastic-plastic Mohr-Coulomb model was used to simulate sand behavior. Results showed that small-sized samples show higher values of peak strength and higher axial strain at failure in comparison with large-sized samples. The size effect on the behavior of samples became further apparent when the number of geotextile layers was increased or the confining pressure was decreased. In addition, the results indicated that the magnitude of the size effect on the mechanical behavior of reinforced sand decreases with an increase in the sample size.展开更多
We review a family of models recently introduced to describe Brownian motors under the influence of Coulomb friction, or more general non-linear friction laws. It is known that, if the heat bath is modeled as the usua...We review a family of models recently introduced to describe Brownian motors under the influence of Coulomb friction, or more general non-linear friction laws. It is known that, if the heat bath is modeled as the usual Langevin equation(linear viscosity plus white noise), additional non-linear friction forces are not sufficient to break detailed balance, i.e. cannot produce a motor effect. We discuss two possibile mechanisms to elude this problem. A first possibility, exploited in several models inspired to recent experiments, is to replace the heat bath's white noise by a "collisional noise", that is the effect of random collisions with an external equilibrium gas of particles. A second possibility is enlarging the phase space, e.g. by adding an external potential which couples velocity to position, as in a Klein–Kramers equation. In both cases, non-linear friction becomes sufficient to achieve a non-equilibrium steady state and, in the presence of an even small spatial asymmetry, a motor effect is produced.展开更多
The vicinage effects are studied for a fast nitrogen diatomic molecular cluster in a high-density plasma target.A variety of plasma parameters are discussed with regard to stopping power ratio,molecular axis deflectio...The vicinage effects are studied for a fast nitrogen diatomic molecular cluster in a high-density plasma target.A variety of plasma parameters are discussed with regard to stopping power ratio,molecular axis deflection and Coulomb explosion.Emphasis is placed on the vicinage effects on Coulomb explosion and stopping power for a nitrogen cluster in plasmas.The results indicate that vicinage effects influence the correlation between ions in the cluster,and the Coulomb explosion will proceed faster with higher projectile speed,lower plasma density and higher plasma temperature.Comparing hydrogen and nitrogen molecular ions for Coulomb explosion and deflection angle under the same set of parameters,one can find that the nitrogen ion has faster Coulomb explosion and stronger deflection of molecular axis due to the contribution of charge.In the initial stage of the Coulomb explosion the stopping power ratio has a higher value due to enhanced vicinage effects while in the later stage the stopping power ratio approaches one,indicating that the vicinage effects disappear and the ions in the cluster simply behave as independent atomic ions in the plasma.展开更多
The mixed alkali effect was investigated in the glass system 0.75B2O3-0.25[xNa2O-(1 -x)K20] through thermodynamic properties. The calorimetric measurements were performed in HF solution calorimetry at 298 K. The mix...The mixed alkali effect was investigated in the glass system 0.75B2O3-0.25[xNa2O-(1 -x)K20] through thermodynamic properties. The calorimetric measurements were performed in HF solution calorimetry at 298 K. The mixing enthalpy values show non-linear behaviour upon substitution of one alkali ion by another. This thermodynamic non-ideality is caused by the slight variations of distance between metallic cations, the macromolecular structure being unchanged. It can be explained, at least qualitatively, using electrolyte theory based on the Coulombic interactions of charged species originally developed by Debye and Hückel.展开更多
The parasitic source resistance(RS) of AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) is studied in the temperature range 300–500 K. By using the measured RSand both capacitance–voltage(C–V) an...The parasitic source resistance(RS) of AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) is studied in the temperature range 300–500 K. By using the measured RSand both capacitance–voltage(C–V) and current–voltage(I–V) characteristics for the fabricated device at 300, 350, 400, 450, and 500 K, it is found that the polarization Coulomb field(PCF) scattering exhibits a significant impact on RSat the above-mentioned different temperatures. Furthermore, in the AlGaN/AlN/GaN HFETs, the interaction between the additional positive polarization charges underneath the gate contact and the additional negative polarization charges near the source Ohmic contact, which is related to the PCF scattering, is verified during the variable-temperature study of RS.展开更多
We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculati...We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculation results obtained using the modified mobility model are found to accord well with the experimental data. By analyzing the variation of the electron mobility for the two-dimensional electron gas (213EG) with the electric field in the linear region of the AlGaN/AlN/GaN HFET I-V output characteristics, it is found that the polarization Coulomb field scattering still plays an important role in the electron mobility of AlGaN/AlN/GaN HFETs at the higher drain voltage and channel electric field. As drain voltage and channel electric field increase, the 2DEG density reduces and the polarization Coulomb field scattering increases, as a result, the 2DEG electron mobility decreases.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10435020)the Science Foundation of the Beijing Education Committee (Grant No XK100270454)
文摘This paper makes some qualitative and quantitative analyses about halo formation rules of some mirror nuclei with the relativistic mean-field (RMF) theory and the Woods Saxon mean-field model. By analysing two opposite effects of Coulomb interaction on the proton halo formation, it finds that the energy level shift has a larger contribution than that of the Coulomb barrier when the mass number A is small, the hindrance of the Coulomb barrier becomes more obvious with the increase of the mass number A, and the overall effect of the Coulomb interaction almost disappears when A ≈ 39 as its two effects counteract with each other.
基金Supported by Turkish Scientific and Technical Research Council(No.113F058)Scientific Research Coordination of Selcuk University(BAP)(No.SU-2014/14701490)Helmholtz International Center for FAIR(LOEWE program)
文摘New theoretical calculations are performed to investigate the Coulomb proximity and angular momentum effects on multifragmentation picture for84Kr+112,124 Sn collisions at an incident beam energy of 35 Me V/nucleon.Charge and isotopic distributions and the mean neutron-to-proton ratios of the fragments are reproduced within the microcanonical Markov chain calculations on the basis of Statistical Multifragmentation Model. It is shown that the Coulomb interactions and angular momentum effects are very important to reproduce isotopic composition of nuclear fragments in peripheral heavy-ion collisions at Fermi energies. Our results imply that it is possible to investigate in laboratories the modification of structure parameters of fragments, such as the symmetry energy coefficient, at subnuclear densities in dense environment of other species.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11547218,11564020,and 11504314)
文摘We investigate atomic above-threshold ionization in elliptically polarized strong laser fields with a semiclassical approach.With increasing laser intensity,the Coulomb focusing(CF) effects are found to become stronger in both parallel and perpendicular directions with respect to the polarization plane.The dependence of CF effects on tunnel exit,initial transverse momentum distribution and laser electric field is analyzed.It was revealed that the effects of tunnel exit are most prominent with variation of the laser intensity,and the other two factors both play non-negligible roles.Our results provide a deeper insight to the recent experiments of Coulomb asymmetry[Shafir D,et al.,2013 Phys.Rev.Lett.111 023005 and Li M,et al,2013 Phys.Rev.Lett.111 023006].
基金supported by the National Natural Science Foundation of China(Grant Nos.10874132 and 11174228)the Doctoral Scientific Research Foundation of HUAT(Grant No.BK201407)One of the authors(Huang Hai-Ming)supported by the Scientific Research Items Foundation of Educational Committee of Hubei Province,China(Grant No.Q20131805)
文摘The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204016)
文摘We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle, Employing the equation of motion method for the nonequilibrium Green's function, we show that the oscillation of the dot, i.e., the time-dependent coupling between the dot's electron and the reservoirs, can destroy the Kondo effect. With the increase in the oscillation frequency of the dot, the density of states of the quantum dot shuttle changes from the Kondo-like to a Coulomb-blockade pattern. Increasing the coupling between the dot and the electrodes may partly recover the Kondo peak in the spectrum of the density of states. Understanding of the effect of mechanical motion on the transport properties of an electron shuttle is important for the future application of nanoelectromechanical devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574095 and 10675087)
文摘A new theoretical model of the triatomic molecular wake effect is proposed and applied to molecular ions D^+3 and HD^+2 while passing through a solid. The wake effects resulting from the reactions of the two similar ions with thin carbon foil are also investigated by using the Coulomb explosion technique. The experimental results are in good agreement with theoretical estimates and the molecular structure of HD^+2 is determined by using the model.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金Funded by the National Natural Science Foundation of China(No.51772107)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ022)。
文摘To get a dielectric material with a high dielectric permittivity and suppressed dielectric loss,nano-Ag with a particle size of 20 nm and Ag@TiO_(2)core-shell particles with diameters of approximately 70-120 nm were embedded in polyvinylidene fluoride(PVDF)to fabricate nano-Ag/Ag@TiO_(2)/PVDF composites.After being modified by nano-Ag with 3 vol%optimal amount,the relative permittivity(ε_r)at 100 Hz of 50 vol%Ag@TiO_(2)/PVDF composites was 61,and the dielectric loss can be suppressed to 0.04,almost 96.4%lower than that of unmodified composites,and a higher frequency stability of bothε_r and loss has also been found.The underlying mechanism of the reduced loss was attributed to Maxwell-Wagner polarization and the Coulomb blockade effect caused by the introduction of a small amount of nano-Ag,which will block the movement of electrons between metal nanoparticles and composites.The space charge polarization and conductance loss are weakened at lower and higher Ag@TiO_(2)filling ratios,respectively,thus leading to a very low loss of the composites.
文摘This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the confining pressure and the type of geotextile. Modeling was performed on samples with five different diameters: 38, 100, 200, 500 and 600 mm. The elastic-plastic Mohr-Coulomb model was used to simulate sand behavior. Results showed that small-sized samples show higher values of peak strength and higher axial strain at failure in comparison with large-sized samples. The size effect on the behavior of samples became further apparent when the number of geotextile layers was increased or the confining pressure was decreased. In addition, the results indicated that the magnitude of the size effect on the mechanical behavior of reinforced sand decreases with an increase in the sample size.
基金supported by the "Granular-Chaos" projectfunded by the Italian MIUR under the FIRB-IDEAS grant number RBID08Z9JE
文摘We review a family of models recently introduced to describe Brownian motors under the influence of Coulomb friction, or more general non-linear friction laws. It is known that, if the heat bath is modeled as the usual Langevin equation(linear viscosity plus white noise), additional non-linear friction forces are not sufficient to break detailed balance, i.e. cannot produce a motor effect. We discuss two possibile mechanisms to elude this problem. A first possibility, exploited in several models inspired to recent experiments, is to replace the heat bath's white noise by a "collisional noise", that is the effect of random collisions with an external equilibrium gas of particles. A second possibility is enlarging the phase space, e.g. by adding an external potential which couples velocity to position, as in a Klein–Kramers equation. In both cases, non-linear friction becomes sufficient to achieve a non-equilibrium steady state and, in the presence of an even small spatial asymmetry, a motor effect is produced.
基金supported by National Natural Science Foundation of China(Nos.11375034,11005025)the Fundamental Research Funds for the Central Universities of China(Nos.3132014231,3132013337)Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China(HIT.NSRIF.2009044)
文摘The vicinage effects are studied for a fast nitrogen diatomic molecular cluster in a high-density plasma target.A variety of plasma parameters are discussed with regard to stopping power ratio,molecular axis deflection and Coulomb explosion.Emphasis is placed on the vicinage effects on Coulomb explosion and stopping power for a nitrogen cluster in plasmas.The results indicate that vicinage effects influence the correlation between ions in the cluster,and the Coulomb explosion will proceed faster with higher projectile speed,lower plasma density and higher plasma temperature.Comparing hydrogen and nitrogen molecular ions for Coulomb explosion and deflection angle under the same set of parameters,one can find that the nitrogen ion has faster Coulomb explosion and stronger deflection of molecular axis due to the contribution of charge.In the initial stage of the Coulomb explosion the stopping power ratio has a higher value due to enhanced vicinage effects while in the later stage the stopping power ratio approaches one,indicating that the vicinage effects disappear and the ions in the cluster simply behave as independent atomic ions in the plasma.
文摘The mixed alkali effect was investigated in the glass system 0.75B2O3-0.25[xNa2O-(1 -x)K20] through thermodynamic properties. The calorimetric measurements were performed in HF solution calorimetry at 298 K. The mixing enthalpy values show non-linear behaviour upon substitution of one alkali ion by another. This thermodynamic non-ideality is caused by the slight variations of distance between metallic cations, the macromolecular structure being unchanged. It can be explained, at least qualitatively, using electrolyte theory based on the Coulombic interactions of charged species originally developed by Debye and Hückel.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174182,11574182,and 61306113)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110131110005)
文摘The parasitic source resistance(RS) of AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs) is studied in the temperature range 300–500 K. By using the measured RSand both capacitance–voltage(C–V) and current–voltage(I–V) characteristics for the fabricated device at 300, 350, 400, 450, and 500 K, it is found that the polarization Coulomb field(PCF) scattering exhibits a significant impact on RSat the above-mentioned different temperatures. Furthermore, in the AlGaN/AlN/GaN HFETs, the interaction between the additional positive polarization charges underneath the gate contact and the additional negative polarization charges near the source Ohmic contact, which is related to the PCF scattering, is verified during the variable-temperature study of RS.
基金supported by the National Natural Science Foundation of China (Grant No. 11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20110131110005)
文摘We simulate the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths using the quasi-two-dimensional (quasi-2D) model. The calculation results obtained using the modified mobility model are found to accord well with the experimental data. By analyzing the variation of the electron mobility for the two-dimensional electron gas (213EG) with the electric field in the linear region of the AlGaN/AlN/GaN HFET I-V output characteristics, it is found that the polarization Coulomb field scattering still plays an important role in the electron mobility of AlGaN/AlN/GaN HFETs at the higher drain voltage and channel electric field. As drain voltage and channel electric field increase, the 2DEG density reduces and the polarization Coulomb field scattering increases, as a result, the 2DEG electron mobility decreases.