A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth m...A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.展开更多
We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to dece...We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.展开更多
As one of the main error sources in high-precision Global Positioning System (GPS) data processing, higher-order ionospheric (HOI) delays cause significant effects on coordinate time series that cannot be ignored ...As one of the main error sources in high-precision Global Positioning System (GPS) data processing, higher-order ionospheric (HOI) delays cause significant effects on coordinate time series that cannot be ignored in analyses of long time series. Typically two geomagnetic models, DIPOLE model and Inter- national Geomagnetic Reference Field (IGRF) model, are used for calculating HOI corrections. This paper investigates the effects of HOI correction caused by the DIPOLE model on coordinate time series. GPS data from 104 globally distributed International GNSS Service (IGS) stations spanning from January, 1999 to December, 2003 were reprocessed following up-to-date processing strategies utilizing GAMIT and GLOBK software. Two coordinate time series solutions before and after applying HOI corrections using the DIPOLE model were derived for studying the effects in terms of seasonal variations and noise amplitudes. The results show that after applying the HOI corrections calculated with DIPOLE, the noise amplitudes of the coordinate time series increased, especially in the north and east directions, and the increased amplitudes of the flicker noise were larger than those of the white noise. Furthermore, spurious periodic signals that were probably introduced by the HOI corrections from the DIPOLE model were also found. Moreover, an apparent increase was confirmed for the power spectra of most of the stations, especially in the north direction, and the amplitudes of both the annual and semi-annual signals also increased in the north and east directions. It can be inferred that the quality of the external data sources such as the geomagnetic model might be the key factors that lead to the above results. The results also suggest that we should be very careful when the DIPOLE model is used for HOI corrections.展开更多
【目的】随着深部资源勘探开发的重要性不断提高,对高精度地震勘探提出了新要求。针对具有强各向异性的含煤地层,传统基于各向同性的资料处理方法不再适用。【方法】提出一种基于水平横向各向同性介质(Transverse Isotropy Medium with ...【目的】随着深部资源勘探开发的重要性不断提高,对高精度地震勘探提出了新要求。针对具有强各向异性的含煤地层,传统基于各向同性的资料处理方法不再适用。【方法】提出一种基于水平横向各向同性介质(Transverse Isotropy Medium with Vertical Symmetry Axis,VTI)和方位各向异性介质(Transverse Isotropy with Horizontal Axis of Symmetry,HTI)联合处理的地震数据处理方法。首先,针对含煤地层沉积特征,分析VTI介质特点,采用高阶动校正处理,可以有效消除各向异性在大偏移距数据中引起的同相轴弯曲,保证共反射点远近道能达到同相,提高数据叠加成像质量。其次,针对构造裂隙发育特征,立足于HTI介质的方位各向异性分析,采用OVT域处理方法,通过建立方位各向异性参数场去除不同方位角差异对数据的影响。联合应用上述2种处理方法,通过制定合理的处理流程,优选关键参数,搭建一套实用的、适合目标地层的各向异性处理校正方法,解决含煤地层在复杂条件下的速度分析、叠加等问题,从而提高煤系地震数据的分辨率和解释精度。【结果和结论】实际应用结果表明,新方法获得的地震数据主频更高、频带更宽,在小构造特征识别和古地理环境刻画方面更具优势,为精细地质解释提供了有力支撑。同时也强调了对含煤地层进行各向异性处理的必要性,推动各向异性处理技术的在宽方位地震勘探中的应用。展开更多
基金National Natural Science Foundation under Grant No. 51179093National Basic Research Program of China under Grant No. 2011CB013602Program for New Century Excellent Talents in University under Grant No.NCET-10-0531
文摘A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.
文摘We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.
文摘As one of the main error sources in high-precision Global Positioning System (GPS) data processing, higher-order ionospheric (HOI) delays cause significant effects on coordinate time series that cannot be ignored in analyses of long time series. Typically two geomagnetic models, DIPOLE model and Inter- national Geomagnetic Reference Field (IGRF) model, are used for calculating HOI corrections. This paper investigates the effects of HOI correction caused by the DIPOLE model on coordinate time series. GPS data from 104 globally distributed International GNSS Service (IGS) stations spanning from January, 1999 to December, 2003 were reprocessed following up-to-date processing strategies utilizing GAMIT and GLOBK software. Two coordinate time series solutions before and after applying HOI corrections using the DIPOLE model were derived for studying the effects in terms of seasonal variations and noise amplitudes. The results show that after applying the HOI corrections calculated with DIPOLE, the noise amplitudes of the coordinate time series increased, especially in the north and east directions, and the increased amplitudes of the flicker noise were larger than those of the white noise. Furthermore, spurious periodic signals that were probably introduced by the HOI corrections from the DIPOLE model were also found. Moreover, an apparent increase was confirmed for the power spectra of most of the stations, especially in the north direction, and the amplitudes of both the annual and semi-annual signals also increased in the north and east directions. It can be inferred that the quality of the external data sources such as the geomagnetic model might be the key factors that lead to the above results. The results also suggest that we should be very careful when the DIPOLE model is used for HOI corrections.
文摘【目的】随着深部资源勘探开发的重要性不断提高,对高精度地震勘探提出了新要求。针对具有强各向异性的含煤地层,传统基于各向同性的资料处理方法不再适用。【方法】提出一种基于水平横向各向同性介质(Transverse Isotropy Medium with Vertical Symmetry Axis,VTI)和方位各向异性介质(Transverse Isotropy with Horizontal Axis of Symmetry,HTI)联合处理的地震数据处理方法。首先,针对含煤地层沉积特征,分析VTI介质特点,采用高阶动校正处理,可以有效消除各向异性在大偏移距数据中引起的同相轴弯曲,保证共反射点远近道能达到同相,提高数据叠加成像质量。其次,针对构造裂隙发育特征,立足于HTI介质的方位各向异性分析,采用OVT域处理方法,通过建立方位各向异性参数场去除不同方位角差异对数据的影响。联合应用上述2种处理方法,通过制定合理的处理流程,优选关键参数,搭建一套实用的、适合目标地层的各向异性处理校正方法,解决含煤地层在复杂条件下的速度分析、叠加等问题,从而提高煤系地震数据的分辨率和解释精度。【结果和结论】实际应用结果表明,新方法获得的地震数据主频更高、频带更宽,在小构造特征识别和古地理环境刻画方面更具优势,为精细地质解释提供了有力支撑。同时也强调了对含煤地层进行各向异性处理的必要性,推动各向异性处理技术的在宽方位地震勘探中的应用。